Answer:
- 53 protons
- 131g
- Iodine
- Halogens
Explanation:
atomic no. = no. of protons
= 53 proton
mass = no. of protons + no. of
neutrons
= 53 + 78
= 131
%Mass
Ar C = 12 g/mol, Mr C₄H₁₀ = 58 g/mol, Ar H = 1 g/mol

or

Answer:
0.18 mol
Explanation:
Given data
- Mass of carbon tetrachloride (solvent): 750 g
- Molality of the solution: 0.24 m
- Moles of iodine (solute): ?
Step 1: Convert the mass of the solvent to kilograms
We will use the relationship 1 kg = 1,000 g.

Step 2: Calculate the moles of the solute
The molality is equal to the moles of solute divided by the kilograms of solvent. Then,

Answer:
- <u>1. Since the temperature of your body is higher than the temperature of the air and of the water, heat will flow from your body to the air and pool.</u>
<u></u>
- <u>2. The pool feels cooler than air because the water can absorb heat energy faster than the air, due to liquids are better conductors than gases.</u>
<u></u>
Explanation:
Heat always flows from warmer substances to colder ones.
The normal body temperature is 98ºF. Therefore, the heat will flow from your body to the air and pool, which are at a lower temperature of 80ºF. In both cases, you will lose thermal energy and the external parts of your body will cool down.
The difference between both cases is in the heat conduction capacity of both air and water.
Liquids (and solids) are better <em>thermal conductors </em>than gases because the conduction of heat occurs as result of the direct contact between the particles of matter: the atoms or molecules in hot matter vibrate faster than their neighbors and transmit them kinetic energy by direct contact.
Therefore, the liquid water in the swimming pool, at the same temperature than the air, will be able to absorb more heat in the same time from the body.
In conclusion, the body will cool down faster in water than in air which is why the pool feels cooler than air.
C. PH3 represents a compound commonly known as phosphine, whose IUPAC name is phosphorus trihydride.
<h3>What type of bond is PH3?</h3>
The electronegativity of PH3 found in the Periodic Table of the Period attracts covalent electron pairs and creates covalent bonds. However, because the electrons are not bound, asymmetrical rate distribution occurs. Therefore, PH3 is a polar molecule with a non-polar covalent bond and currently has no polar bond.
<h3 /><h3>What defines a covalent bond?</h3>
A covalent bond consists of sharing one or more electron pairs between two atoms. These electrons are attracted to two nuclei at the same time. Covalent bonds are formed when the difference in electronegativity between two atoms is too small for electron transfer to form ions.
Click here for more information on covalent bonds brainly.com/question/12732708
# SPJ10