Answer:
1) multiplicative inverse of i = -i
2) Multiplicative inverse of i^2 = -1
3) Multiplicative inverse of i^3 = i
4) Multiplicative inverse of i^4 = 1
Step-by-step explanation:
We have to find multiplicative inverse of each of the following.
1) i
The multiplicative inverse is 1/i
if i is in the denominator we find their conjugate

So, multiplicative inverse of i = -i
2) i^2
The multiplicative inverse is 1/i^2
We know that i^2 = -1
1/-1 = -1
so, Multiplicative inverse of i^2 = -1
3) i^3
The multiplicative inverse is 1/i^3
We know that i^2 = -1
and i^3 = i.i^2

so, Multiplicative inverse of i^3 = i
4) i^4
The multiplicative inverse is 1/i^4
We know that i^2 = -1
and i^4 = i^2.i^2

so, Multiplicative inverse of i^4 = 1
Answer:
![x=(243)log_{\frac{1}{81}}[(\frac{1}{81})-1]](https://tex.z-dn.net/?f=x%3D%28243%29log_%7B%5Cfrac%7B1%7D%7B81%7D%7D%5B%28%5Cfrac%7B1%7D%7B81%7D%29-1%5D)
Step-by-step explanation:
you have the following formula:

To solve this equation you use the following properties:

Thne, by using this propwerty in the equation (1) you obtain for x
![log_{(\frac{1}{81})}(\frac{1}{81})^{\frac{x}{243}}=log_{\frac{1}{81}}[(\frac{1}{81})-1]\\\\\frac{x}{243}=log_{\frac{1}{81}}[(\frac{1}{81})-1]\\\\x=(243)log_{\frac{1}{81}}[(\frac{1}{81})-1]](https://tex.z-dn.net/?f=log_%7B%28%5Cfrac%7B1%7D%7B81%7D%29%7D%28%5Cfrac%7B1%7D%7B81%7D%29%5E%7B%5Cfrac%7Bx%7D%7B243%7D%7D%3Dlog_%7B%5Cfrac%7B1%7D%7B81%7D%7D%5B%28%5Cfrac%7B1%7D%7B81%7D%29-1%5D%5C%5C%5C%5C%5Cfrac%7Bx%7D%7B243%7D%3Dlog_%7B%5Cfrac%7B1%7D%7B81%7D%7D%5B%28%5Cfrac%7B1%7D%7B81%7D%29-1%5D%5C%5C%5C%5Cx%3D%28243%29log_%7B%5Cfrac%7B1%7D%7B81%7D%7D%5B%28%5Cfrac%7B1%7D%7B81%7D%29-1%5D)
Answer:
Bar Graph
Step-by-step explanation:
Bar graphs are used to compare things between groups or tracks. They are the most efficient because the set data is set to change at any time
Answer:
4 1/6
Step-by-step explanation:
4 x 6 = 24
1/6 x 6 = 6/6 = 1
24 + 1 = 25 :)