Answer:
The wrt=itten expressions are too difficult to interpret properly. I did my best but I don't see any of the answers as equivalent to <u>-3x - 2y, so please check my interpretations of the answer options.</u>
Step-by-step explanation:
"Negative 3 x minus one-half 4 y"
-3x- (1/2)4y
<u>or -3x - 2y</u>
<u>=====</u>
The answer options are too garbled for me to make sense of them. Are they:
1. 2 y minus 5 x minus one-half 2 y : 2y -5x - (1/2)2y; <u>y -5x</u> ?
2. 2 x Negative 2 x minus one-half 6 y : 2(-2x)- (1/2)6y; <u>-4x - 3y</u> ?
3. 3 x Negative 3 x minus three-fourths 4 y : 3x(-3x) - (3/4)4y; <u>-9x -3y</u> ?
4. one-fourth Negative 3 y minus three-fourths 7 y one-fourth minus 3 x:
(1/4)(-3y) - (3/4)7y - (1/4)(-3x); -(3/4)y -(21/4)y + (3/4)x; -(24/4)y + (3/4)x; ?
I don't see any of the answers as equivalent to <u>-3x - 2y, so please check my interpretations of the answer options.</u>
1: Solve for either x or y in one of the equations. So x + y = -1 is y = -x -1
2: substitute the new equation in the opposite equation. So x - (-x - 1) = 7
3: distribute the negative. X + x + 1 = 7
4: combine like terms. 2x + 1 = 7
5: solve for x. Subtract 1 on both sides. 2x = 6
6: divide by 2 to get x by itself. X = 3
7: plug the new value of x into one of the ORIGINAL equations. 3 + y = -1
8: solve for y. Subtract 3 on both sides.
Y = -4
9: the solution is written as (x,y) so the solution would be (3, -4)
Answer:
Domain: (-∞, ∞) or All Real Numbers
Range: (0, ∞)
Asymptote: y = 0
As x ⇒ -∞, f(x) ⇒ 0
As x ⇒ ∞, f(x) ⇒ ∞
Step-by-step explanation:
The domain is talking about the x values, so where is x defined on this graph? That would be from -∞ to ∞, since the graph goes infinitely in both directions.
The range is from 0 to ∞. This where all values of y are defined.
An asymptote is where the graph cannot cross a certain point/invisible line. A y = 0, this is the case because it is infinitely approaching zero, without actually crossing. At first, I thought that x = 2 would also be an asymptote, but it is not, since it is at more of an angle, and if you graphed it further, you could see that it passes through 2.
The last two questions are somewhat easy. It is basically combining the domain and range. However, I like to label the graph the picture attached to help even more.
As x ⇒ -∞, f(x) ⇒ 0
As x ⇒ ∞, f(x) ⇒ ∞