Answer:
speed =wavelenght x frequency
v=4.5 x 10 to the -7 x 667=0.3 x 10 to the -4 m/s
speed= distance/time
time=distance/speed
t=4 x 10 to the 16/0.3 x 10 to the -4=13.33 x 10 to the 20 seconds
Explanation:
The answer is 1. 4 is incorrect because you can't really decrease the mass of the driver. 3 is incorrect because accelerating the driver would cause more damage than not. 2 is incorrect because decreasing the distance would only cause more damage. 1 is correct because by increasing the length of time the force acts on the driver helps reduce the speed of the driver and cause the drive to sustain less injuries. Hope that helps.
Answer:
(a): When the four resistors are connected in series the equivalent resistor value is Req= 48Ω
(b): when the four resistors are connected in parallel the equivalent resistor value is Req=3Ω
Explanation:
R=R1=R2=R3=R4= 12Ω
(a)
Req= R1+R2+R3+R4
Req= 48 Ω
(b)
Req= (1/12 * 4)⁻¹
Req= 3 Ω
As we know that sphere roll without slipping so there is no loss of energy in this case
so here we can say that total energy is conserved
Initial Kinetic energy + initial potential energy = final kinetic energy + final potential energy

as we know that ball start from rest

height of the ball initially is given as


also we know that

also for pure rolling

also we know that


now plug in all data in above equation




So speed at the bottom of the inclined plane will be 29 rad/s
Impulse describes the change of momentum. Since we don't know the momentum of the soccer ball before the hit, this question is hard to answer. If you assume the momentum of the ball before the hit was p = 0, then the change in momentum is just Δp = Impulse = mv.