Answer:
257 kN.
Explanation:
So, we are given the following data or parameters or information in the following questions;
=> "A jet transport with a landing speed
= 200 km/h reduces its speed to = 60 km/h with a negative thrust R from its jet thrust reversers"
= > The distance = 425 m along the runway with constant deceleration."
=> "The total mass of the aircraft is 140 Mg with mass center at G. "
We are also give that the "aerodynamic forces on the aircraft are small and may be neglected at lower speed"
Step one: determine the acceleration;
=> Acceleration = 1/ (2 × distance along runway with constant deceleration) × { (landing speed A)^2 - (landing speed B)^2 × 1/(3.6)^2.
=> Acceleration = 1/ (2 × 425) × (200^2 - 60^2) × 1/(3.6)^2 = 3.3 m/s^2.
Thus, "the reaction N under the nose wheel B toward the end of the braking interval and prior to the application of mechanical braking" = The total mass of the aircraft × acceleration × 1.2 = 15N - (9.8 × 2.4 × 140).
= 140 × 3.3× 1.2 = 15N - (9.8 × 2.4 × 140).
= 257 kN.
Answer:
False
Explanation:
Please see the attached file
Answer:
The answer to your question is: 15 pizzas
Explanation:
data
26 large pizzas ------ 66 students
? large pizzas -------- 38 students
Rule of three
x = 38 (26) / 66 = 14.96 ≈ 15 pizzas
The speed of bullet =
850 m/s
Distance given = 1 km = 1000m
S = D/t
t • S = D/t • t
St = D
St/S = D/S
t = D/S
t = 1000m/850m/s
t = 1.176 s
It will take the bullet 1.176 or about 1.18 seconds to go 1 km.
Answer:
Part a)

Part b)

Since the distance of other building is 15 m so YES it can make it to other building
Part c)

direction of velocity is given as
![[tex]\theta = 26.35 degree](https://tex.z-dn.net/?f=%5Btex%5D%5Ctheta%20%3D%2026.35%20degree)
Explanation:
Part a)
acceleration due to gravity on this planet is 3/4 times the gravity on earth
So the acceleration due to gravity on this new planet is given as


now the vertical displacement covered by the canister is given as

now by kinematics we have



Part b)
Horizontal speed of the canister is given as

now the distance moved by it



Since the distance of other building is 15 m so YES it can make it to other building
Part c)
Final velocity in X direction will remains the same

final velocity in Y direction



now magnitude of velocity is given as



direction of velocity is given as


![[tex]\theta = 26.35 degree](https://tex.z-dn.net/?f=%5Btex%5D%5Ctheta%20%3D%2026.35%20degree)