Go to Mathway .com they'll help you out and do it for you
that way you dont have to wait
h(t)=(t+3) 2 +5 h, left parenthesis, t, right parenthesis, equals, left parenthesis, t, plus, 3, right parenthesis, squared, plu
lesya692 [45]
Answer:
1
Step-by-step explanation:
If I understand the question right, G(t) = -((t-1)^2) + 5 and we want to solve for the average rate of change over the interval −4 ≤ t ≤ 5.
A function for the rate of change of G(t) is given by G'(t).
G'(t) = d/dt(-((t-1)^2) + 5). We solve this by using the chain rule.
d/dt(-((t-1)^2) + 5) = d/dt(-((t-1)^2)) + d/dt(5) = -2(t-1)*d/dt(t-`1) + 0 = (-2t + 2)*1 = -2t + 2
G'(t) = -2t + 2
This is a linear equation, and the average value of a linear equation f(x) over a range can be found by (f(min) + f(max))/2.
So the average value of G'(t) over −4 ≤ t ≤ 5 is given by ((-2(-4) + 2) + (-2(5) + 2))/2 = ((8 + 2) + (-10 + 2))/2 = (10 - 8)/2 = 2/2 = 1
Click to let others know, how helpful is it
Answer:
1/12
Step-by-step explanation:
When you are doing probability with multiple things at once you have to multiply the probabilities of each asked number from each object together to get the probability of them both landing on those numbers
Since there are two events happening simultaneously (windy and no sun), we can apply the concept of conditional probability here.
P(A|B) = P(A∩B)/P(B)
where it means that given B is happening, the probability that A is happening as well is the ratio of the chance for A and B to happen simultaneously over the chance of B to happen.
For our case, this can be interpreted as
P(A|B): it is the probability that it is windy (A) GIVEN that there is no sun (B)
P(A∩B) : chance of wind and no sun
P(B) : chance that there is no sun tomorrow
The chance of P(A∩B) is already given as 20% or 0.20. Since there is 10% or 0.10 chance of sun, then chances of having no sun tomorrow is (1-0.10) = 0.90.
Thus, we have P(A|B) = 0.2/0.9 ≈ 0.22 or 22%.
So, answer is B: 22%<span>.</span>