1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
3241004551 [841]
3 years ago
15

Find the focus and directrix of the equation -8y=(x+1)^2+8

Mathematics
1 answer:
Lemur [1.5K]3 years ago
7 0
What is that little ^ sign for? i wonder what it means.
You might be interested in
What is 482.073 in word form
enyata [817]

Answer:

Four hundred eighty two and seventy three hundredths

5 0
3 years ago
The price of one share of a stock fell 4 dollars each day for 8 days. How much value did one share of the stock lose after 8 day
ivolga24 [154]

Answer:

After 8 days, the stock lost 32 dollars.

Step-by-step explanation:

If 4 dollars fell every day for 8 days, it would be 32 dollars because 4*8 is 32.

5 0
3 years ago
FIND (-8/3)+(-1/4)+(-11/6)+3/8-3
emmainna [20.7K]

Answer:

-7 3/8

Step-by-step explanation:

The least common denominator of 3, 4, 6, and 8 is 24; converting all of our fractions to that denominator and solving, we have

-\frac{8}{3}+\left(-\frac{1}{4}\right)+\left(-\frac{11}{6}\right)+\frac{3}{8}-3\\=-\frac{64}{24}+\left(-\frac{6}{24}\right)+\left(-\frac{44}{24}\right)+\frac{9}{24}-3\\\\=\frac{-64+(-6)+(-44)+9}{24} -3\\\\=\frac{-70+(-44)+9}{24} -3\\\\=\frac{-114+9}{24} -3\\\\=\frac{-105}{24}-3 \\\\=\frac{-35}{8}-3\\ \\=-4\frac{3}{8}-3\\\\=-7\frac{3}{8}

So our solution is -7 3/8

8 0
3 years ago
The hyperbolas is The point halfway between its two vertices
baherus [9]
A hyperbola is like having two asymptotic parabolas facing opposite to each other. The point halfway between the vertices of the two parabolas is the hyperbola's center point.

Thank you for posting your question here in Brainly. I hope I was able to help you. Have a good day.
5 0
3 years ago
Read 2 more answers
Please help me to prove this!​
Ymorist [56]

Answer:  see proof below

<u>Step-by-step explanation:</u>

Given: A + B + C = π              → A + B = π - C

                                              → B + C = π - A

                                              → C + A = π - B

                                              → C = π - (B +  C)

Use Sum to Product Identity:  cos A + cos B = 2 cos [(A + B)/2] · cos [(A - B)/2]

Use the Sum/Difference Identity: cos (A - B) = cos A · cos B + sin A · sin B

Use the Double Angle Identity: sin 2A = 2 sin A · cos A

Use the Cofunction Identity: cos (π/2 - A) = sin A

<u>Proof LHS → Middle:</u>

\text{LHS:}\qquad \qquad \cos \bigg(\dfrac{A}{2}\bigg)+\cos \bigg(\dfrac{B}{2}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)

\text{Sum to Product:}\qquad 2\cos \bigg(\dfrac{\frac{A}{2}+\frac{B}{2}}{2}\bigg)\cdot \cos \bigg(\dfrac{\frac{A}{2}-\frac{B}{2}}{2}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)\\\\\\.\qquad \qquad \qquad \qquad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)

\text{Given:}\qquad \quad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{\pi -(A+B)}{2}\bigg)

\text{Sum/Difference:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\sin \bigg(\dfrac{A+B}{2}\bigg)

\text{Double Angle:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\sin \bigg(\dfrac{2(A+B)}{2(2)}\bigg)\\\\\\.\qquad \qquad  \qquad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+2\sin \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A+B}{4}\bigg)

\text{Factor:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[ \cos \bigg(\dfrac{A-B}{4}\bigg)+\sin \bigg(\dfrac{A+B}{4}\bigg)\bigg]

\text{Cofunction:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[ \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{\pi}{2}-\dfrac{A+B}{4}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{2\pi-(A+B)}{4}\bigg)\bigg]

\text{Sum to Product:}\ 2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[2 \cos \bigg(\dfrac{2\pi-2B}{2\cdot 4}\bigg)\cdot \cos \bigg(\dfrac{2A-2\pi}{2\cdot 4}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =4\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -A}{4}\bigg)

\text{Given:}\qquad \qquad 4\cos \bigg(\dfrac{\pi -C}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -A}{4}\bigg)\\\\\\.\qquad \qquad \qquad =4\cos \bigg(\dfrac{\pi -A}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -C}{4}\bigg)

LHS = Middle \checkmark

<u>Proof Middle → RHS:</u>

\text{Middle:}\qquad 4\cos \bigg(\dfrac{\pi -A}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -C}{4}\bigg)\\\\\\\text{Given:}\qquad \qquad 4\cos \bigg(\dfrac{B+C}{4}\bigg)\cdot \cos \bigg(\dfrac{C+A}{4}\bigg)\cdot \cos \bigg(\dfrac{A+B}{4}\bigg)\\\\\\.\qquad \qquad \qquad =4\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{B+C}{4}\bigg)\cdot \cos \bigg(\dfrac{C+A}{4}\bigg)

Middle = RHS \checkmark

3 0
3 years ago
Other questions:
  • How do you make a fraction into a mixed number?
    5·1 answer
  • Factor Completely:<br><br> 6x^2 + 12x – 21
    5·1 answer
  • What is 2x+3+7x=-24?
    14·2 answers
  • Matching
    10·1 answer
  • The Internal Revenue Service (IRS) provides a toll-free help line for taxpayers to call in and get answers to questions as they
    10·1 answer
  • What is -8xf(0)+4xg(−8)
    14·1 answer
  • What is the general form of this equation:
    14·1 answer
  • On Tuesday morning Cody went to the gym and worked out for 1 3/5 hours
    11·1 answer
  • Assume y varies directly with x. If y = 80<br> when x = 8, find x when y = 40.
    9·1 answer
  • Another brainliest if its right i just need help pls
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!