1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Yanka [14]
3 years ago
15

Which double angle or half angle identity would you use to verify the following: csc x sec x = 2 csc 2x

Mathematics
2 answers:
Nataly [62]3 years ago
6 0

Answer:

b

Step-by-step explanation:

I would use b.

Why?

2 \csc(2x)

2 \frac{1}{\sin(2x)}

\frac{2}{\sin(2x)}

\frac{2}{2\sin(x)\cos(x)}

\frac{1}{\sin(x)\cos(x)}{/tex][tex]\frac{1}{\sin(x)\frac{1}{\cos(x)}

\csc(x) \sec(x)

I applied the identity sin(2x)=2sin(x)cos(x) in line 3 to 4.

makkiz [27]3 years ago
4 0

Answer: OPTION B.

Step-by-step explanation:

It is important to remember these identities:

csc(x)=\frac{1}{sin(x)}\\\\sec(x)=\frac{1}{cos(x)}

Knowing this, we can say that:

csc(x) sec(x)=\frac{1}{sin(x)}*\frac{1}{cos(x)}=\frac{1}{sin(x)*cos(x)}

Now we need to use the following Double angle identity :

sin(2x)=2sin(x)cos(x)

And solve for sin(x)cos(x):

\frac{sin(2x)}{2}=sin(x)cos(x)

The next step is to make the substitution into \frac{1}{sin(x)*cos(x)} and finally simplify:

\frac{1}{\frac{sin(2x)}{2}}=\frac{\frac{1}{1}}{\frac{sin(2x)}{2}}=\frac{2}{sin(2x)}=2csc(2x)

You might be interested in
Can some one PLEASE give me brainliest
KIM [24]

Answer:

You gotta deserve it

Step-by-step explanation:

8 0
3 years ago
Organize from least to greatest
dedylja [7]

Answer:

y=31x/15 < y=27x/13 < y=15x/7 < y=13x/6 < y=11x/5 < y=21x/9 (=7x/3) < y=19x/8

Step-by-step explanation:

since all equations base on a linear, simple expression of x, we can simply compare the fractions.

in general, the bigger the number at the bottom, the smaller the individual fraction. that is our first indicator.

we then notice that many fractions represent the value of 2 plus one fraction.

31/15 = 2 1/15

27/13 = 2 1/13

15/7 = 2 1/7

13/6 = 2 1/6

11/5 = 2 1/5

the only exceptions are 21/9 and 19/8

but 21/9 is actually 7/3 = 2 1/3

and fits therefore into the list above.

that leaves 19/8 = 2 3/8.

the list above can be sorted based on the single fraction at the end (remember, the bigger the number at the bottom, the smaller the value). so, from least to greatest :

2 1/15 (31/15)

2 1/13 (27/13)

2 1/7 (15/7)

2 1/6 (13/6)

2 1/5 (11/5)

2 1/3 (7/3 = 21/9)

where did now 2 3/8 fit in ?

well, 3/8 is almost 1/2 (so, relatively big), and we start our comparison with the biggest number in the list so far :

1/3 (from 2 1/3).

what is bigger - 1/3 or 3/8 ?

let's find the smallest number that can be divided by 3 and by 8. that would be 24. so now we bring both fractions to the same base of 24.

1/3 = 8/24

3/8 = 9/24

=> 3/8 > 1/3

and therefore, 19/8 is the largest value and at the end of the list.

5 0
2 years ago
Rewrite the function in vertex form,y = (a - h)² + k, and identify the coordinates of the vertex and equation of axis of symmetr
Illusion [34]

Answer:

Rewrite the function in vertex form,y = (a - h)² + k, and identify the coordinates of the vertex and equation of axis of symmetry.Show Work y = -3x² - 24x - 50

Step-by-step explanation:

5 0
3 years ago
The time it takes for a planet to complete its orbit around a particular star is called the? planet's sidereal year. The siderea
BartSMP [9]

Answer:

(a) See below

(b) r = 0.9879  

(c) y = -12.629 + 0.0654x

(d) See below

(e) No.

Step-by-step explanation:

(a) Plot the data

I used Excel to plot your data and got the graph in Fig 1 below.

(b) Correlation coefficient

One formula for the correlation coefficient is  

r = \dfrac{\sum{xy} - \sum{x} \sum{y}}{\sqrt{\left [n\sum{x}^{2}-\left (\sum{x}\right )^{2}\right]\left [n\sum{y}^{2} -\left (\sum{y}\right )^{2}\right]}}

The calculation is not difficult, but it is tedious.

(i) Calculate the intermediate numbers

We can display them in a table.

<u>    x   </u>    <u>      y     </u>   <u>       xy     </u>    <u>              x²    </u>   <u>       y²    </u>

   36       0.22              7.92               1296           0.05

   67        0.62            42.21              4489           0.40

   93         1.00            93.00           20164           3.46

 433        11.8          5699.4          233289        139.24

 887      29.3         25989.1          786769       858.49

1785      82.0        146370          3186225      6724

2797     163.0         455911         7823209    26569

<u>3675 </u>  <u> 248.0  </u>    <u>   911400      </u>  <u>13505625</u>   <u> 61504        </u>

9965   537.81     1545776.75  25569715   95799.63

(ii) Calculate the correlation coefficient

r = \dfrac{\sum{xy} - \sum{x} \sum{y}}{\sqrt{\left [n\sum{x}^{2}-\left (\sum{x}\right )^{2}\right]\left [n\sum{y}^{2} -\left (\sum{y}\right )^{2}\right]}}\\\\= \dfrac{9\times 1545776.75 - 9965\times 537.81}{\sqrt{[9\times 25569715 -9965^{2}][9\times 95799.63 - 537.81^{2}]}} \approx \mathbf{0.9879}

(c) Regression line

The equation for the regression line is

y = a + bx where

a = \dfrac{\sum y \sum x^{2} - \sum x \sum xy}{n\sum x^{2}- \left (\sum x\right )^{2}}\\\\= \dfrac{537.81\times 25569715 - 9965 \times 1545776.75}{9\times 25569715 - 9965^{2}} \approx \mathbf{-12.629}\\\\b = \dfrac{n \sum xy  - \sum x \sum y}{n\sum x^{2}- \left (\sum x\right )^{2}} -  \dfrac{9\times 1545776.75  - 9965 \times 537.81}{9\times 25569715 - 9965^{2}} \approx\mathbf{0.0654}\\\\\\\text{The equation for the regression line is $\large \boxed{\mathbf{y = -12.629 + 0.0654x}}$}

(d) Residuals

Insert the values of x into the regression equation to get the estimated values of y.

Then take the difference between the actual and estimated values to get the residuals.

<u>    x    </u>   <u>      y     </u>   <u>Estimated</u>   <u>Residual </u>

    36        0.22        -10                 10

    67        0.62          -8                  9

    93        1.00           -7                  8

   142        1.86           -3                  5

  433       11.8             19               -  7

  887     29.3             45               -16  

 1785     82.0            104              -22

2797    163.0            170               -  7

3675   248.0            228               20

(e) Suitability of regression line

A linear model would have the residuals scattered randomly above and below a horizontal line.

Instead, they appear to lie along a parabola (Fig. 2).

This suggests that linear regression is not a good model for the data.

4 0
3 years ago
8^-3x^7y^-11/5x^-19y^17z^-14. Simplify
bazaltina [42]
Y^2/2560x^12z^14........................................

7 0
3 years ago
Other questions:
  • Which statement about scatter plots is true? A. Associated variables cannot be represented on scatter plots B. A regression line
    9·2 answers
  • A marching band with 75 members makes two rectangular marching formations. One rectangle has 6 rows and the other rectangle had
    11·1 answer
  • Resuelve las siguientes situaciones problemáticas: A) en una caja de 36 naranjas, si se han descompuesto, ¿qué parte del conteni
    13·1 answer
  • number 3. what is the algebraic expression for the following phrase; the product of 4 more than “x” and 6?
    14·1 answer
  • 11a + 12b = does it equal 23ab or not
    10·1 answer
  • Find X (Show Your Work)<br> WILL MARK BRAINLIEST!
    10·1 answer
  • What’s the slope of the line ? plz help
    12·1 answer
  • Cindy has 32 apples and 24 bananas from which to make fruit baskets.
    10·1 answer
  • What is the square root of 24? show your steps.
    10·1 answer
  • Find the diameter of a circle with an area of 94 square millimeters.
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!