I think a) would be the answer. I proceeded by elimination: the domaine of the function goes from 3 and continues to infinity, so that leaves with a) and b) as possible answers. Both have the same range and both of their functions reflect over the x axis, so we have to compare the two answer by looking at the position of the function in the graph. The function is in the first quadrant (top right corner), so the position of the function has to be at our right, which leads us to a).
Answer:
And if we solve for a we got
The 95th percentile of the hip breadth of adult men is 16.2 inches.
Step-by-step explanation:
Let X the random variable that represent the hips breadths of a population, and for this case we know the distribution for X is given by:
Where and
For this part we want to find a value a, such that we satisfy this condition:
(a)
(b)
We can find a quantile in the normal standard distribution who accumulates 0.95 of the area on the left and 0.05 of the area on the right it's z=1.64
Using this value we can set up the following equation:
And we have:
And if we solve for a we got
The 95th percentile of the hip breadth of adult men is 16.2 inches.
Answer:
when u multiple it it us 100 but when I added it was 21
so it is 100 or 21 sorry if it is not right