Answer: a tomato plant is the correct answer
Explanation:
Answer:
Cytochrome C; it provides evidences that there is similarities in the respiratory pathways for producing ATPs by all living organisms especially mammals.
Explanation:
Cytochrome c is located in the intermembranes of mitochondria, and it functions in the transfer of of one electron in electron transport chain,(ETC) needed for generation of proton motive force; for generation of energy in the synthesis of ATPs by ATPase synthase during chemiosmosis. Its allows oxdation-reduction by the switching of its iron ii to iron iii. during electron transports.However its iron atoms does not undergo oxidation with oxygen. This feature makes it stable and an ideal carrier of electrons.
Its amino acid sequences is very similar in all living organisms especially between mammals(e.g man and chimpanzees)with little variation in few amino acid residues due to mutation.This similarity in its amino acids sequences in all living organism together with small molecular size makes it ideal molecular evidence for studying comparative molecular evidence of evolution.
This is because it can be used to trace the pathways of respiration to synthesize energy, and therefore to conclude that most organisms share common ancestry, since a very similar protein sequence in a structure(Cytochrome c) participated in unique ETC mechanisms in all, needed for energy synthesis .
When a somatic cell is mutated, none of the other cells in the organism mutate with it. Screenings usually detect mutations that are in numerous cells and not in just one. That is why a mutation in a somatic cell of a multicellular organism escape detection.
<h3>What are mutations?</h3>
A mutation in biology is an adjustment to the nucleic acid sequence of an organism's, virus's, or extrachromosomal DNA. DNA or RNA can be found in the viral genome. Errors in DNA replication, viral replication, mitosis, meiosis, or other types of DNA damage (such as pyrimidine dimers from exposure to ultraviolet radiation) can result in mutations.
These errors can then lead to error-prone repairs, particularly microhomology-mediated end joining, error-causing repairs, or errors during replication. Due to mobile genetic elements, mutations can also result from the insertion or deletion of DNA segment.
To learn more about mutations with the help of given link:
brainly.com/question/17031191
#SPJ4
Answer: Atoms were created after the Big Bang 13.7 billion years ago. As the hot, dense new universe cooled, conditions became suitable for quarks and electrons to form. Quarks came together to form protons and neutrons, and these particles combined into nuclei.