Answer:
a. Heterozygous individuals may pass on their copy of the disease-causing allele to offspring.
Explanation:
Tay-Sachs, which is a recessive lethal disease ---- Let say the recessive lethal diseases is s
∴ it only results when an individual posses two copies of the diseases-causing allele i.e two copies of the disease will be ss.
Now, when two hetrozygous individuals crossed , it is obvious that each can pass on their copy of the disease-causing allele to the offspring.
Let show an illustration for the above statement.
Let the heterozygous individual be Ts, if Ts cross with another Ts;
we will have:
Ts × Ts
T s
T TT Ts
s Ts ss
the offspring are TT,Ts,Ts,ss
We can now see how the Heterozygous individuals pass on their copy of the disease-causing allele to the offspring (Ts).
Answer: variation, reproduction, and heritability.
Explanation: Genetic variation is an important force in evolution as it allows natural selection to increase or decrease frequency of alleles already in the population. Genetic variation is advantageous to a population because it enables some individuals to adapt to the environment while maintaining the survival of the population.
All species must reproduce to survive. Organisms cannot live forever, so they must reproduce to allow their species to continue to live on. Reproduction is nature's way of allowing a species to survive.
Higher heritability means the trait evolves faster; fewer generations are required for the trait to increase to the same degree as a trait with lower heritability. For this reason, genetic correlation and heritability show how a trait might change from one generation to the next and into the future.
Answer:
I think this is what you're looking for?
Explanation:
Answer:
There wouldn't be enough surface area for the electron transport chain.
The answer you chose is right