If velocity is constant, then the object is moving
at constant speed in a straight line.
Answer:
Each part so obtained will represent the fraction 1/8 and the number line obtained will be of the form: To mark 3/8; move three parts on the right-side of zero. To mark 5/8; move five parts on the right-side of zero. To mark -1 3/8 i.e. -11/8; move eleven parts on the left-side of zero.
Explanation:
This force on compass dials is an example of a force that acts at a distance.
Answer:
A. 58.8m/s
Explanation:
The acceleration due to gravity is 9.8 m/s², so the velocity after 6 seconds is ...
v = at
v = (9.8 m/s²)(6 s) = 58.8 m/s
"2 km/hr/s" means that in each second, its engines can increase its speed by 2 km/hr.
If it keeps doing that for 30 seconds, its speed has increased by 60 km/hr.
On top of the initial speed of 20 km/hr, that's 80 km/hr at the end of the 30 seconds.
This whole discussion is of <em>speed</em>, not velocity. Surely, in high school physics,
you've learned the difference by now. There's no information in the question that
says anything about the train's <em>direction</em>, and it was wrong to mention velocity in
the question. This whole thing could have been taking place on a curved section
of track. If that were the case, it would have taken a team of ace engineers, cranking
their Curtas, to describe what was happening to the velocity. Better to just stick with
speed.