Scientists have designed solar cells to trap solar energy and convert it to D electrical energy. Its D because converting something has to do with recharging something and electronics have to charge. I hope I helped.
Answer is B- 200 m
Given:
m (mass of the car) = 2000 Kg
F = -2000 N
u(initial velocity)= 20 m/s.
v(final velocity)= 0.
Now we know that
<u>F= ma</u>
Where F is the force exerted on the object
m is the mass of the object
a is the acceleration of the object
Substituting the given values
-2000 = 2000 × a
a = -1 m/s∧2
Consider the equation
<u>v=u +at</u>
where v is the initial velocity
u is the initial velocity
a is the acceleration
t is the time
0= 20 -t
t=20 secs
s = ut +1/2(at∧2)
where s is the displacement of the object
u is the initial velocity
t is the time
v is the final velocity
a is the acceleration
s= 20 ×20 +(-1×20×20)/2
<u>s= 200 m</u>
Answer:
Definition. Nuclear physics is the study of the protons and neutrons at the centre of an atom and the interactions that hold them together in a space just a few femtometres (10-15 metres) across. Example nuclear reactions include radioactive decay, fission, the break-up of a nucleus, and fusion, the merging of nuclei.
Explanation:
here is your answer hope you will enjoy and mark me as brainlist
thank you
The glowing beam was repelled by a negatively charged plate because they were negatively charged
<h3>What are the nature of charges?</h3>
The nature of charges refers to the properties of charges.
There are two types of charges:
- negative charges
- positive charges
The law of electricity states that opposite charges attract whereas like charges repel.
Therefor, in Thomson’s experiment, the glowing beam was repelled by a negatively charged plate because they were negatively charged
In conclusion, like charges repel while opposite charges attract.
Learn more about charges at: brainly.com/question/12781208
#SPJ1
A 100kg crate slides along a floor with a starting velocity of 21 m/s. If the force due to friction is 8N, then, it will take 262.5 s for the box to come to rest.
We'll begin by calculating the declaration of the box. This can be obtained as follow:
Force (F) = –8 N (opposition)
Mass (m) = 100 Kg
<h3>Deceleration (a) =? </h3>
<h3>F = ma</h3>
–8 = 100 × a
Divide both side by 1000
<h3>a = –0.08 ms¯²</h3>
Therefore, the deceleration of the box is –0.08 ms¯²
Finally, we shall determine the time taken for the box to come to rest. This can be obtained as follow:
Deceleration (a) = –0.08 ms¯²
Initial velocity (u) = 21 ms¯¹
Final velocity (v) = 0 ms¯¹
<h3>Time (t) =.? </h3>
<h3>v = u + at</h3>
0 = 21 + (–0.08×t)
0 = 21 – 0.08t
Collect like terms
0 – 21 = –0.08t
–21 = –0.08t
Divide both side by –0.08
<h3>t = 262.5 s</h3>
Therefore, it will take 262.5 s for the box to come to rest.
Learn more: brainly.com/question/14446351