The linear velocity of a rotating object is the product of the angular velocity and the radius of the circular motion. Angular velocity is the rate of the change of angular displacement of a body that is in a circular motion. It is a vector quantity so it consists of a magnitude and direction. From the problem, the angular velocity is 5.9 rad per second and the radius is given as 12 centimeters. We calculate as follows:
Linear velocity = angular velocity (radius)
Linear velocity = 5.9 (12 ) = 70.8 cm / s
The linear velocity of the body in motion is 70.8 centimeters per second or 0.708 meters per second.
Answer:
(D)
to establish an understanding of key concepts relating to population biology
Explanation:
Thats what I would go with but I didn't read the article so I don't know what context was used. Good luck! :)
Answer:
a) -41.1 Joule
b) 108.38 Kelvin
Explanation:
Pressure = P = 290 Pa
Initial volume of gas = V₁ = 0.62 m³
Final volume of gas = V₂ = 0.21 m³
Initial temperature of gas = T₁ = 320 K
Heat loss = Q = -160 J
Work done = PΔV
⇒Work done = 290×(0.21-0.62)
⇒Work done = -118.9 J
a) Change in internal energy = Heat - Work
ΔU = -160 -(-118.9)
⇒ΔU = -41.1 J
∴ Change in internal energy is -41.1 J
b) V₁/V₂ = T₁/T₂
⇒T₂ = T₁V₂/V₁
⇒T₂ = 320×0.21/0.62
⇒T₂ = 108.38 K
∴ Final temperature of the gas is 108.38 Kelvin
Since neon atoms move quickly, it would shrink.
Boom explosion then your parents made u :$$