Fffhjndnjehevevevrvrvevrbbrbrrjjrjrjrhrhrhbrvrvvrurrjjrjrhrhr
Answer:
Statement 1 and 3 are correct.
Explanation:
1. The mass moves downward, so the net acceleration of the block is straight downward.
2.The mass is sliding through the globe, so only the force of gravity is acting on the mass which pulls it in downward direction. The force of gravity has two components [mg sin∅] and [mg cos∅].
Explanation:
It is given that,
Mass of the woman, m₁ = 52 kg
Angular velocity, 
Mass of disk, m₂ = 118 kg
Radius of the disk, r = 3.9 m
The moment of inertia of woman which is standing at the rim of a large disk is :


I₁ = 790.92 kg-m²
The moment of inertia of of the disk about an axis through its center is given by :


I₂ =897.39 kg-m²
Total moment of inertia of the system is given by :


I = 1688.31 kg-m²
The angular momentum of the system is :



So, the total angular momentum of the system is 4980.5 kg-m²/s. Hence, this is the required solution.
If the box is a distance 1.81 m from the rear of the truck when the truck starts,<span> ... Force of Friction = mu_s * Normal Force( </span>M<span> * G) ... The </span>box starts<span> moving! ... Now that the </span>box<span> is moving, the bed of the </span>truck<span> pulls at it with 17.4 ... out how </span>long<span> it will take the </span>box<span> to reach the back of the </span>truck<span>. ... T^2 = 2 * </span>1.81<span> / .64</span>
Answer:
a) He found the same value of q/m for different cathode materials.
b) y =
, c) v = 
Explanation:
In Thomson's experiments he was able to measure the deflection of the light beam under the effect of the magnetic field and with these results find the e / m relationship, which in all cases is the same, therefore the most important conclusion is that the value e E / m is constant for all materials.
b) In the part of the plates the electrons are accelerated by the electric field,
F = ma
- e E = m a
a = - (e/m) E₀
the distance traveled is
X axis
x = v₀ t
the separation of the plates is x = d
t = vo / d
Y axis
y = v_{oy} t + ½ to t²
y = ½ a t²
y =
c) In this case there is a magnetic field B₀ and the electrons have no deflection
F = - e E + e v x B
if there is no deviation F = 0
e E = e v B
v = 