Answer:
the initial velocity is 20 m/s and the acceleration is 2 m/s²
Explanation:
Given equation of motion, v = 20 + 2t
If V represents the final velocity of the object, then the initial velocity and acceleration of the object is calculated as follows;
From first kinematic equation;
v = u + at
where;
v is the final velocity
u is the initial velocity
a is the acceleration
t is time of motion
If we compare (v = u + at) to (v = 20 + 2t)
then, u = 20 and
a = 2
Therefore, the initial velocity is 20 m/s and the acceleration is 2 m/s²
The source of information was biased. It was like walking along a river bank in the country and asking everybody you meet whether they like fishing. Or asking 500 people sitting in the bleachers whether they like baseball.
I'm sure the scientist would have gotten different data if she interviewed 500 teenagers at neighborhood basketball courts, or 500 teenagers at a rock concert.
As you know, plants are usually green<span>, which means that most other colors are absorbed. One of the most common pigments is called chlorophyll, and one of the varieties is responsible for the </span>green<span> color of plants; it strongly absorbs </span>blue<span> and </span>red<span>light, which leaves only the </span>green<span> light to make it to our eyes.</span>
The right answer for the question that is being asked and shown above is that: "A.tectonic activity concentrated in certain areas." A piece of evidence did Alfred Wegener use to develop the theory of continental drift is that <span>A.tectonic activity concentrated in certain areas</span>
During the daytime, I have mostly line symmetry.
During the night, I often have almost spherical symmetry.