Answer:
Step-by-step explanation:
We first need to figure out what the equation is for this set of circumstances before we can answer any questions. We will use the equation
which is just another form of an exponential equation where
(1 + r) is the growth rate, P is the initial investment, and t is the time in years. We will fill in the values we know first to create the equation:
which simplifies to
Now we'll just sub in a 1 for t and solve, then a 2 for t and solve.
When t = 1:
A(t) = 4000(1.11) so
A(t) = 4440
When t = 2:
which simplifies to
A(t) = 4000(1.2321) so
A(t) = 4928.40
We have been given that there are 125 people and three door prizes.
In the first part we need to figure out how many ways can three door prizes of $50 each be distributed?
Since there are total 125 people and there are three identical door prices, therefore, we need to use combinations for this part.
Hence, the required number of ways are:
In the next part, we need to figure out how many ways can door prizes of $5,000, $500 and $50 be distributed?
Since we have total 125 people and there are three prices of different values, therefore, the required number of ways can be figured out by using permutations.
Answer:
(C is your answer) -Raymond :3
Step-by-step explanation: