1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vinil7 [7]
3 years ago
5

17) 10(x + 3) -(-9x - 4) = x-5 +3

Mathematics
1 answer:
navik [9.2K]3 years ago
5 0

Answer:

-2

Step-by-step explanation:

10x+30+9x+4=x-5+3

19x+34=x-2

18x=-36

x=-2

You might be interested in
The sequence below shows the total number of days Francisco had used his
drek231 [11]
1 week because ye. 47
3 0
3 years ago
How many ounces are in a pounds
Ratling [72]
16 ounces are in a pound.
8 0
3 years ago
Read 2 more answers
One angle is its own supplement.<br> What size is this angle?
givi [52]

Answer:When an angle is its own supplement, that means that the angle, plus itself, will equal 180 degrees.

Step-by-step explanation:

6 0
2 years ago
Read 2 more answers
Convert the angle θ=180​∘ to radians.
Kazeer [188]

Answer:

pi

Step-by-step explanation:

To convert from degrees to radians, we multiply by pi/180

180 * pi/180 = pi

3 0
3 years ago
Suppose X, Y, and Z are random variables with the joint density function f(x, y, z) = Ce−(0.5x + 0.2y + 0.1z) if x ≥ 0, y ≥ 0, z
dexar [7]

Answer:

The value of the constant C is 0.01 .

Step-by-step explanation:

Given:

Suppose X, Y, and Z are random variables with the joint density function,

f(x,y,z) = \left \{ {{Ce^{-(0.5x + 0.2y + 0.1z)}; x,y,z\geq0  } \atop {0}; Otherwise} \right.

The value of constant C can be obtained as:

\int_x( {\int_y( {\int_z {f(x,y,z)} \, dz }) \, dy }) \, dx = 1

\int\limits^\infty_0 ({\int\limits^\infty_0 ({\int\limits^\infty_0 {Ce^{-(0.5x + 0.2y + 0.1z)} } \, dz }) \, dy } )\, dx = 1

C\int\limits^\infty_0 {e^{-0.5x}(\int\limits^\infty_0 {e^{-0.2y }(\int\limits^\infty_0 {e^{-0.1z} } \, dz  }) \, dy  }) \, dx = 1

C\int\limits^\infty_0 {e^{-0.5x}(\int\limits^\infty_0{e^{-0.2y}([\frac{-e^{-0.1z} }{0.1} ]\limits^\infty__0 }) \, dy  }) \, dx = 1

C\int\limits^\infty_0 {e^{-0.5x}(\int\limits^\infty_0 {e^{-0.2y}([\frac{-e^{-0.1(\infty)} }{0.1}+\frac{e^{-0.1(0)} }{0.1} ])  } \, dy  }) \, dx = 1

C\int\limits^\infty_0 {e^{-0.5x}(\int\limits^\infty_0 {e^{-0.2y}[0+\frac{1}{0.1}]  } \, dy  }) \, dx =1

10C\int\limits^\infty_0 {e^{-0.5x}([\frac{-e^{-0.2y} }{0.2}]^\infty__0  }) \, dx = 1

10C\int\limits^\infty_0 {e^{-0.5x}([\frac{-e^{-0.2(\infty)} }{0.2}+\frac{e^{-0.2(0)} }{0.2}]   } \, dx = 1

10C\int\limits^\infty_0 {e^{-0.5x}[0+\frac{1}{0.2}]  } \, dx = 1

50C([\frac{-e^{-0.5x} }{0.5}]^\infty__0}) = 1

50C[\frac{-e^{-0.5(\infty)} }{0.5} + \frac{-0.5(0)}{0.5}] =1

50C[0+\frac{1}{0.5} ] =1

100C = 1 ⇒ C = \frac{1}{100}

C = 0.01

3 0
3 years ago
Other questions:
  • What's the square footage of a rectangle 4ft by 6ft
    9·1 answer
  • Write the General Form of the equation of the circle centered at (1, 2) with radius 3. PLZZZZZZZZZZZZZ Help
    6·1 answer
  • Identify a possible first step using the elimination method to solve the system and then find the solution to the system. 3x + 2
    10·1 answer
  • 4+(3•6)divided by 2-10
    11·1 answer
  • 2/3y = 54 can y be 81
    15·2 answers
  • Please help Geometry 30 points plus brainliest ...
    9·1 answer
  • دائرة مركزها o فيها الوتران cd,ab اذا علمت ان النقطة n نقطة منتصف الوتر cd والنقطة m نقطة منتصف الوترab وكان om=on وطول cn=6cm
    11·2 answers
  • Mark is six years younger than his sister Teri. Their combined ages equals 86. How old are Mark and Teri?
    6·1 answer
  • Please do this &lt;33333
    10·1 answer
  • List all the elements of the sample space for the following experiment:
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!