Answer:
simplified 10k-1a-10
Step-by-step explanation:
Simplified
For this case, the first thing we are going to do is assume that all the tests are worth the same.
Then, we define a variable:
x: score of Mona's last test
We write now the inequality that models the problem:

From here, we clear the value of x:
Answer:
the lowest grade that Mona can get for her last test so that her test average is 90 or more is:
x = 87
Answer:
7x65 is 455
Step-by-step explanation:
I need more info if this does not workout...
Answer:
y/2 + 5 = -3
y/2 = -8
y = -16
Step-by-step explanation:
Answer:
The functions satisfy the differential equation and linearly independent since W(x)≠0
Therefore the general solution is

Step-by-step explanation:
Given equation is

This Euler Cauchy type differential equation.
So, we can let

Differentiate with respect to x

Again differentiate with respect to x

Putting the value of y, y' and y'' in the differential equation



⇒m²-10m +24=0
⇒m²-6m -4m+24=0
⇒m(m-6)-4(m-6)=0
⇒(m-6)(m-4)=0
⇒m = 6,4
Therefore the auxiliary equation has two distinct and unequal root.
The general solution of this equation is

and

First we compute the Wronskian


=x⁴×6x⁵- x⁶×4x³
=6x⁹-4x⁹
=2x⁹
≠0
The functions satisfy the differential equation and linearly independent since W(x)≠0
Therefore the general solution is
