Answer:
6 seconds
Step-by-step explanation:
Look on the x axis and it tells you the time, the y axis tells you the distance
Answer:
1/5x^12 * y^8.
Step-by-step explanation:
((5x^8*y^7/25)x^4)(y)
=1/5x^12 * y^8.
Answer:
![\large{\textbf{The two numbers are: 26 and 49}.\\}](https://tex.z-dn.net/?f=%5Clarge%7B%5Ctextbf%7BThe%20two%20numbers%20are%3A%2026%20and%2049%7D.%5C%5C%7D)
Step-by-step explanation:
![\large{\textup{assume the two numbers are $x$ and $y$.}}\\\large{\textup{The given sentences are written in mathematical terms as follows:}\\$$ x + y = 75 \hspace{25mm} (1)$$ $$ y = 2x - 3 \hspace{25mm} (2) $$ \\\textup{Substituting $(2)$ in $(1)$,}\\\begin{align*} & \implies x + 2x - 3 = 75 \\& \implies 3x = 78 \\& \implies x = 26\end{align*}\textup{Substituting $x$ in $(1), \hspace{5mm} y = 49$} }](https://tex.z-dn.net/?f=%5Clarge%7B%5Ctextup%7Bassume%20the%20two%20numbers%20are%20%24x%24%20and%20%24y%24.%7D%7D%5C%5C%5Clarge%7B%5Ctextup%7BThe%20given%20sentences%20are%20written%20in%20mathematical%20terms%20as%20follows%3A%7D%5C%5C%24%24%20x%20%2B%20y%20%3D%20%2075%20%20%5Chspace%7B25mm%7D%20%281%29%24%24%20%24%24%20y%20%3D%202x%20-%203%20%5Chspace%7B25mm%7D%20%282%29%20%24%24%20%20%5C%5C%5Ctextup%7BSubstituting%20%24%282%29%24%20in%20%24%281%29%24%2C%7D%5C%5C%5Cbegin%7Balign%2A%7D%20%26%20%20%5Cimplies%20x%20%2B%202x%20-%203%20%3D%2075%20%20%5C%5C%26%20%5Cimplies%203x%20%3D%2078%20%5C%5C%26%20%5Cimplies%20x%20%3D%2026%5Cend%7Balign%2A%7D%5Ctextup%7BSubstituting%20%24x%24%20in%20%24%281%29%2C%20%5Chspace%7B5mm%7D%20y%20%3D%2049%24%7D%20%7D)
The value of the product expression (-2x-9y²)(-4x-3) is 8x² + 6x + 27y² + 36xy²
<h3>How to evaluate the product?</h3>
The expression is given as:
(-2x-9y²)(-4x-3)
Expand the expression
8x² + 6x + 27y² + 36xy²
Hence, the value of the product expression (-2x-9y²)(-4x-3) is 8x² + 6x + 27y² + 36xy²
Read more about products at:
brainly.com/question/10873737
#SPJ1
Answer:
42 degrees
Step-by-step explanation:
48 and r are equal.
The box means right angle, or 90 degrees
180-90-48=42 degrees