The smallest value it could be is 4 and the largest value it could be is 10.
The triangle inequality theorem states that any two sides of a triangle must have a sum greater than the third side. Given the two sides we have, 7 and 4, the sum would be 11; this would mean that the missing side could be no more than 10.
If we take the unknown side and the smallest one we're given, we would have the inequality
n+4>7
Subtracting 4 from both sides we would have n>3. That means it would have to be the next integer up, which would be 4.
The chances that NEITHER of these two selected people were born after the year 2000 is 0.36
<h3>How to determine the probability?</h3>
The given parameters are:
Year = 2000
Proportion of people born after 2000, p = 40%
Sample size = 2
The chances that NEITHER of these two selected people were born after the year 2000 is calculated as:
P = (1- p)^2
Substitute the known values in the above equation
P = (1 - 40%)^2
Evaluate the exponent
P = 0.36
Hence, the chances that NEITHER of these two selected people were born after the year 2000 is 0.36
Read more about probability at
brainly.com/question/25870256
#SPJ1
Answer:
pit it on -4 because your reflecting it on x
If Jose bought three Chocolate Bars for 18$ 18 divided by 3 would equal 6. Therefore each Chocolate Bar would cost 6$.