Answer:
![\frac{dy}{dx}=-[(\frac{5x+24}{36x-6x^2})]](https://tex.z-dn.net/?f=%5Cfrac%7Bdy%7D%7Bdx%7D%3D-%5B%28%5Cfrac%7B5x%2B24%7D%7B36x-6x%5E2%7D%29%5D)
Step-by-step explanation:
Given function:
y =
we know
= ln(A) - ln(B)
thus,
y = 
or
also,
ln(Aⁿ) = n × ln(A)
thus,
y = 
therefore,
![\frac{dy}{dx}=[(\frac{3}{2})\times\frac{1}{(6-x)}\times(0 - 1)] - [ (\frac{2}{3})\times\frac{1}{x}\times1]](https://tex.z-dn.net/?f=%5Cfrac%7Bdy%7D%7Bdx%7D%3D%5B%28%5Cfrac%7B3%7D%7B2%7D%29%5Ctimes%5Cfrac%7B1%7D%7B%286-x%29%7D%5Ctimes%280%20-%201%29%5D%20-%20%5B%20%28%5Cfrac%7B2%7D%7B3%7D%29%5Ctimes%5Cfrac%7B1%7D%7Bx%7D%5Ctimes1%5D)
or

or
![\frac{dy}{dx}=-[(\frac{3(3x)+2\times2(6-x)}{2(6-x)\times(3x)})]](https://tex.z-dn.net/?f=%5Cfrac%7Bdy%7D%7Bdx%7D%3D-%5B%28%5Cfrac%7B3%283x%29%2B2%5Ctimes2%286-x%29%7D%7B2%286-x%29%5Ctimes%283x%29%7D%29%5D)
or
![\frac{dy}{dx}=-[(\frac{5x+24}{36x-6x^2})]](https://tex.z-dn.net/?f=%5Cfrac%7Bdy%7D%7Bdx%7D%3D-%5B%28%5Cfrac%7B5x%2B24%7D%7B36x-6x%5E2%7D%29%5D)
By taking the height of the dad and mom 6²3/8 minus 5²5/8
We can separate the 6² and 5², which will give us 1² then look at the 3/8 minus the 5/8, this equals 2/8, which is 1/4. So the difference is 1²1/4
Rectangular form:
z = -2.1213203-2.1213203i
Angle notation (phasor):
z = 3 ∠ -135°
Polar form:
z = 3 × (cos (-135°) + i sin (-135°))
Exponential form:
z = 3 × ei (-0.75) = 3 × ei (-3π/4)
Polar coordinates:
r = |z| = 3 ... magnitude (modulus, absolute value)
θ = arg z = -2.3561945 rad = -135° = -0.75π = -3π/4 rad ... angle (argument or phase)
Cartesian coordinates:
Cartesian form of imaginary number: z = -2.1213203-2.1213203i
Real part: x = Re z = -2.121
Imaginary part: y = Im z = -2.12132034
Hi don’t know but have a wonderful day
Answer: <u>30</u>
Step-by-step explanation:
Yvette- <em>100-7</em>
Isandro- <em>0+3</em>
1.) I'm going to speed up the process and multiply by 5.
Yvette: <em>100-7</em>
7 × 5 = 35
100-35= 65
65-35= 30
Isandro: <em>0+3 </em>
3 × 5 = 15
0+15= 15
15+15=<em> </em>30
2.) If they keep going on this pattern they will have the same number on the 10 round.