There is a difference of 3 on the x axis
The answer is 9 I believe
Answer:
The probability that a jar contains more than 466 g is 0.119.
Step-by-step explanation:
We are given that a jar of peanut butter contains a mean of 454 g with a standard deviation of 10.2 g.
Let X = <u><em>Amount of peanut butter in a jar</em></u>
The z-score probability distribution for the normal distribution is given by;
Z =
~ N(0,1)
where,
= population mean = 454 g
= standard deviation = 10.2 g
So, X ~ Normal(
)
Now, the probability that a jar contains more than 466 g is given by = P(X > 466 g)
P(X > 466 g) = P(
>
) = P(Z > 1.18) = 1 - P(Z
1.18)
= 1 - 0.881 = <u>0.119</u>
The above probability is calculated by looking at the value of x = 1.18 in the z table which has an area of 0.881.
Answer:
The volume of the tumor experimented a decrease of 54.34 percent.
Step-by-step explanation:
Let suppose that tumor has an spherical geometry, whose volume (
) is calculated by:

Where
is the radius of the tumor.
The percentage decrease in the volume of the tumor (
) is expressed by:

Where:
- Absolute decrease in the volume of the tumor.
- Initial volume of the tumor.
The absolute decrease in the volume of the tumor is:


The percentage decrease is finally simplified:
![\%V = \left[1-\left(\frac{R_{f}}{R_{o}}\right)^{3} \right]\times 100\,\%](https://tex.z-dn.net/?f=%5C%25V%20%3D%20%5Cleft%5B1-%5Cleft%28%5Cfrac%7BR_%7Bf%7D%7D%7BR_%7Bo%7D%7D%5Cright%29%5E%7B3%7D%20%5Cright%5D%5Ctimes%20100%5C%2C%5C%25)
Given that
and
, the percentage decrease in the volume of tumor is:
![\%V = \left[1-\left(\frac{0.77\cdot R}{R}\right)^{3} \right]\times 100\,\%](https://tex.z-dn.net/?f=%5C%25V%20%3D%20%5Cleft%5B1-%5Cleft%28%5Cfrac%7B0.77%5Ccdot%20R%7D%7BR%7D%5Cright%29%5E%7B3%7D%20%5Cright%5D%5Ctimes%20100%5C%2C%5C%25)

The volume of the tumor experimented a decrease of 54.34 percent.