Answer:
3.35 atm
Since P₂ > 3.00 atm, the lighter would explode.
Explanation:
Step 1: Given data
- Initial pressure of butane gas (P₁): 2.50 atm
- Initial temperature of butane gas (T₁): 293 K
- Final pressure of butane gas (P₂): ?
- Final temperature of butane gas (T₂): 393 K
Step 2: Calculate the final pressure of butane gas
If we assume ideal behavior, we can calculate the final pressure of butane gas using Gay Lussac's law.
P₁/T₁ = P₂/T₂
P₂ = P₁ × T₂/T₁
P₂ = 2.50 atm × 393 K/293 K = 3.35 atm
Since P₂ > 3.00 atm, the lighter would explode.
There is part of an amino acid molecule that is called the R group or side chain. The side chain of the amino acid called glycine is a single hydrogen atom. The side chain is what differs from amino acid to amino acid.
Answer:
H + ions are attracted to the cathode , gain electrons and form hydrogen gas. OH - ions are attracted to the anode , lose electrons and form oxygen gas.