Answer:
1
Explanation:
in my opinion,The answer would be organism
please mark me as brainliest
Using the Michaelis-Menten equation competitive inhibition, the Inhibition constant, Ki of the inhibitor is 53.4 μM.
<h3>What is the Ki for the inhibitor?</h3>
The Ki of an inhibitor is known as the inhibition constant.
The inhibition is a competitive inhibition as the Vmax is unchanged but Km changes.
Using the Michaelis-Menten equation for inhibition:
Making Ki subject of the formula:
where:
- Kma is the apparent Km due to inhibitor
- Km is the Km of the enzyme-catalyzed reaction
- [I] is the concentration of the inhibitor
Solving for Ki:
where
[I] = 26.7 μM
Km = 1.0
Kma = (150% × 1 ) + 1 = 2.5
Ki = 26.7 μM/{(2.5/1) - 1)
Ki = 53.4 μM
Therefore, the Inhibition constant, Ki of the inhibitor is 53.4 μM.
Learn more about enzyme inhibition at: brainly.com/question/13618533
Answer:
74mL
Explanation:
Given parameters:
Molar mass of citric acid = 192g/mol
Molar mass of baking soda = 84g/mol
Concentration of citric acid = 0.8M
Mass of baking powder = 15g
Unknown parameters:
Volume of citric acid = ?
Solution
Equation of the reaction:
C₆H₈O₇ + 3NaHCO₃ → Na₃C₆H₅O₇ + 3H₂O + 3CO₂
Procedure:
- We work from the known parameters to the unknown. From the statement of the problem, we can approach the solution from the parameters of the baking powder.
- From the baking powder, we can establish a molar relationship between the two reactants. We employ the mole concept in this regard.
- We find the number of moles of the baking powder that went into the reaction using the expression below:
Number of moles = 
Number of moles =
= 0.179mole
- From the equation of the reaction, we can find the number of moles of the citric acid:
3 moles of baking powder reacted with 1 mole of citric acid
0.179 moles of baking powder would react with
:
This yields 0.059mole of citric acid
- To find the volume of the citric acid, we use the mole expression below:
Volume of citric acid = 
Volume of citric acid =
= 0.074L
Expressing in mL gives 74mL
274 mL H3 O+ and fully neutralized
It will take one teaspoon of Mg(OH)2 to completely neutralize 2.00×10^2mL of H3O+.
<h3>What is the purpose of milk of magnesia?</h3>
- For a brief period of time, this medicine is used to relieve sporadic constipation.
- It is an osmotic laxative, which means that it works by drawing water into the intestines, which aids in causing bowel movement.
<h3>What dosage of milk of magnesia is recommended for constipation?</h3>
- Take Milk of Magnesia once day, preferably before bed, in divided doses, or as prescribed by a physician.
- suggested dosage: 30 mL to 60 mL for adults and kids 12 years of age and older. 15 mL to 30 mL for children aged 6 to 11 years.
learn more about milk of magnesia here
brainly.com/question/15178597
#SPJ4
the question you are looking for is
People often take milk of magnesia to reduce the discomfort associated with acid stomach or heartburn. The recommended dose is 1 teaspoon, which contains 4.00x 10^{2} mg of Mg(OH)_2. What volume of an HCl solution with a pH of 1.3 can be neutralized by one dose of milk of magnesia? If the stomach contains 2.00x10^{2}mL of pH 1.3 solution, is all the acid neutralized? If not, what fraction is neutralized?