Part 1
<span>Using rounding or compatible numbers, we estimate the product
![5\times2 \frac{3}{5}](https://tex.z-dn.net/?f=5%5Ctimes2%20%5Cfrac%7B3%7D%7B5%7D%20)
to
![5\times3](https://tex.z-dn.net/?f=5%5Ctimes3)
Therefore, the estimate of the product </span><span>
![5\times2 \frac{3}{5}](https://tex.z-dn.net/?f=5%5Ctimes2%20%5Cfrac%7B3%7D%7B5%7D%20)
, using rounding and compatible numbers is about 15.</span>
Part 2
<span>Using rounding or compatible numbers, we estimate the quotient
![25\frac{7}{8}\div2 \frac{8}{9}](https://tex.z-dn.net/?f=25%5Cfrac%7B7%7D%7B8%7D%5Cdiv2%20%5Cfrac%7B8%7D%7B9%7D%20)
to
![27\div3](https://tex.z-dn.net/?f=27%5Cdiv3)
Therefore, the estimate of the quotient </span><span>
![25\frac{7}{8}\div2 \frac{8}{9}](https://tex.z-dn.net/?f=25%5Cfrac%7B7%7D%7B8%7D%5Cdiv2%20%5Cfrac%7B8%7D%7B9%7D%20)
, using rounding and compatible numbers is about 9.</span>
Part 3
Given that Mr.
Garcia's class ate
![3\frac{2}{3}](https://tex.z-dn.net/?f=3%5Cfrac%7B2%7D%7B3%7D)
pizzas, Mrs Rizzoli's class ate <span>
![4\frac{1}{8}](https://tex.z-dn.net/?f=4%5Cfrac%7B1%7D%7B8%7D)
pizzas,
and Mrs. Tindal's class ate </span><span>
![3\frac{1}{4}](https://tex.z-dn.net/?f=3%5Cfrac%7B1%7D%7B4%7D)
pizzas.
Using benchmarks, we estimate the
total number of pizzas eaten by all three classes as follows: </span>
![3\frac{3}{4}](https://tex.z-dn.net/?f=3%5Cfrac%7B3%7D%7B4%7D)
,
![4](https://tex.z-dn.net/?f=4)
and <span>
![3\frac{1}{4}](https://tex.z-dn.net/?f=3%5Cfrac%7B1%7D%7B4%7D)
Thus, the </span><span>total number of pizzas eaten by all three classes is given by
![3\frac{3}{4}+4+3\frac{1}{4}=11](https://tex.z-dn.net/?f=3%5Cfrac%7B3%7D%7B4%7D%2B4%2B3%5Cfrac%7B1%7D%7B4%7D%3D11)
Therefore, </span>the <span>total number of pizzas eaten by all three classes is about 11.</span>