Fred and Victoria provide the following proofs for vertical angles to be equal.
2 answers:
Both Fred and Victoria are correct.
Answer:
Both Fred and Victoria's proofs are correct.
Step-by-step explanation:
Fred's proof:
- angle 2 + angle 3 = 180° (t is a straight line) IT IS TRUE THAT t IS A STRAIGHT LINE
- angle 1 + angle 2 = 180° (PQ is a straight line) IT IS TRUE THAT PQ IS A STRAIGHT LINE
- Therefore, angle 1 + angle 2 = angle 2 + angle 3 (Transitive Property of Equality) THIS IS AN EXAMPLE OF THE TRANSITIVE PROPERTY OF EQUALITY
- Hence, angle 1 = angle 3 (Subtraction Property of Equality)THIS IS AN EXAMPLE OF THE SUBTRACTION PROPERTY OF EQUALITY
Victoria's proof:
- angle 1 + angle 4 = 180° (t is a straight line) <u>TRUE</u>
- angle 1 + angle 2 =180° (PQ is a straight line) <u>TRUE</u>
- Therefore, angle 1 + angle 2 = angle 1 + angle 4 (Transitive Property of Equality)<u> TRUE</u>
- Hence, angle 2 = angle 4 (Subtraction Property of Equality) <u>TRU</u>
You might be interested in
Answer:
Do in calculator simple answer
Answer:
c 25
Step-by-step explanation:
Answer:
This is the graph of y = 0.4x
Answer:
Cómo puedo ayudar
Step-by-step explanation:
77% of the school want electronic newsletters, so 23% of the school want physical paper newsletters.
77% of 650 is 500.5.
23% of 650 is 149.5.
650/100 = 6.5
6.5x77 = 500.5
6.5x23 = 149.5
It's best to round that figure up to 150 as there will not be a parent who only needs half of the newsletter.