Same side interior angles are supplementary
Answer:
A, C, D
Step-by-step explanation:
Consider triangles NKL and NML. These triangles are right triangles, because

In these right triangles:
- reflexive property;
- given
Thus, triangles NKL and NML by HA postulate. Congruent triangles have congruent corresponding parts, so
![\overline{KN}\cong \overline{NM}\\ \\\overline{KL}\cong \overline{LM}\ [\text{option D is true}]](https://tex.z-dn.net/?f=%5Coverline%7BKN%7D%5Ccong%20%5Coverline%7BNM%7D%5C%5C%20%5C%5C%5Coverline%7BKL%7D%5Ccong%20%5Coverline%7BLM%7D%5C%20%5B%5Ctext%7Boption%20D%20is%20true%7D%5D)
Since

then
![7x-4=5x+12\\ \\7x-5x=12+4\\ \\2x=16\\ \\x=8\ [\text{option A is true}]\\ \\MN=KN=7\cdot 8-4=56-4=52\ [\text{option C is true}]](https://tex.z-dn.net/?f=7x-4%3D5x%2B12%5C%5C%20%5C%5C7x-5x%3D12%2B4%5C%5C%20%5C%5C2x%3D16%5C%5C%20%5C%5Cx%3D8%5C%20%5B%5Ctext%7Boption%20A%20is%20true%7D%5D%5C%5C%20%5C%5CMN%3DKN%3D7%5Ccdot%208-4%3D56-4%3D52%5C%20%5B%5Ctext%7Boption%20C%20is%20true%7D%5D)
Option B is false, because KN=52 units.
Option E is false, because LN is congruent KN, not LM
Answer:
C. It has been stretched horizontally.
Step-by-step explanation:
According to the diagram, the parabola has not been reflected in any way, nor has it been translated, since the parabola is pointing up in a smile, and the vertex is still at the origin.
The parabola does appear to be stretched, since the parent function had points at (1, 1), and (2, 4), but this parabola does not contain those points.
Since the parabola appears to be flatter than the parent function, we can say that C. It has been stretched horizontally.
Hope this helps!
A=1/2(h)(3/4h)
A=3/8h²
h²=8/3(A)
h=√8A/3
☺☺☺☺
Answer:

Step-by-step explanation:
Given

Required
Solve for d

Collect Like Terms


Take LCM



Make d the subject
