<span>f(x) = x</span>² <span>+ 12x + 6 </span>→ y = x² + 12x + 6<span>
Let us convert the standard form into vertex form.
1) Complete the squares. Isolate x</span>² and x terms.
<span>y - 6 = x</span>² + 12x
<span>
2) Create the perfect square trinomial. Whatever number is added on one side must also be added on the other side.
y - 6 + 36 = x</span>² + 12x + 36<span>
y + 30 = (x + 6)</span>²
<span>y = (x + 6)</span>² - 30 ← Vertex form
<span>
To check:
y = (x + 6) (x + 6) - 30
y = x</span>² + 6x + 6x + 36 - 30
<span>y = x</span>² + 12x + 6<span>
The zero that could be added to the given function is 36, -36</span>
The common factor is b since they both share it.
Hope this helps
Answer:
2 sets of possible solutions:
x=3, y = 5
and
x=-1, y = -3
Step-by-step explanation:
Using the graphical method, (see attached)
you can graph both equations and find their intersection points.
From the attached plot, you can see that the graphs intersect at (3,5) and (-1,-3)
Alternatively, you can solve this numerically by solving the following system of equations. You will get the same answer.
y = 2x + 1 ------------------- eq. (1)
y = x² - 4 ------------------- eq. (2)
Answer: ∠B=70°
Step-by-step explanation:
It is shown in the diagram that ∠A and ∠B is vertical angles.
- Vertical angle theorem: opposite angles are congruent.
<u>Solve:</u>
∠A=∠B
8x+6=4x+38
4x=32
x=8
<h2>∠B=4x+38=4(8)+38=32+38=70°</h2>
It is answer b!!! hope this helps