To solve this we are going to use the half life equation

Where:

is the initial sample

is the time in years

is the half life of the substance

is the remainder quantity after

years
From the problem we know that:



Lets replace those values in our equation to find

:




We can conclude that after 1600 years of radioactive decay, the mass of the 100-gram sample will be
91.7 grams.
Answer:
There should be one more equation
Step-by-step explanation:
9514 1404 393
Answer:
38.2°
Step-by-step explanation:
The law of sines tells you ...
sin(x)/15 = sin(27°)/11
sin(x) = (15/11)sin(27°) . . . . . multiply by 15
x = arcsin((15/11)sin(27°)) ≈ arcsin(0.619078) ≈ 38.2488°
x ≈ 38.2°
_____
<em>Additional comment</em>
In "law of sines" problems, you need to identify a side and opposite angle that you know both values of. Then, you need to identify whether you're looking for an angle or a side, and whether its opposite side or angle is known. If two angles are known, you can always figure the third from the sum of angles in a triangle.
Here, we have angle 27° opposite side 11. We are looking for an angle, and we know its opposite side. This lets us use the ratio formula directly. Since the angle is the unknown, it is useful to write the equation with sines on top and sides on the bottom.
The given angle is opposite the shorter of the given sides, so this triangle has two solutions. We assume that we want the solution that is an acute angle (141.8° is the other solution). That assumption is based on the drawing. Usually, you're cautioned not to take the drawings at face value.
Answer:
(x, y)
(-1,0)
since the rest of the points aren't in the multiple choice well it's (-1,0)
You can find the x and y intercepts by plugging 0 in for each of the variables
(0)=-7x-1
1=-7x
x=-1/7
your x- intercept is (-1/7,0)
y=-7(0)-1
y=-1
your y-intercept is (0,-1)