Answer:
6
Step-by-step explanation:
Cost per item is found by dividing the cost by the number of items. If the woman bought n items for $120, the cost of each item is $120/n. If the woman bought 24 more items, n+24, at the same price, then the cost per item is $120/(n+24). The problem statement tells us this last cost is $16 less than the first cost:
120/(n+24) = (120/n) -16
Multiplying by n(n+24) gives ...
120n = 120(n+24) -16(n)(n+24)
0 = 120·24 -16n^2 -16·24n . . . . . . subtract 120n and collect terms
n^2 +24n -180 = 0 . . . . . . . . . . . . . divide by -16 to make the numbers smaller
(n +30)(n -6) = 0 . . . . . . . . . . . . . . factor the quadratic
The solutions to this are the values of n that make the factors zero: n = -30, n = 6. The negative value of n has no meaning in this context, so n=6 is the solution to the equation.
The woman bought 6 items.
_____
Check
When the woman bought 6 items for $120, she paid $120/6 = $20 for each of them. If she bought 6+24 = 30 items for the same money, she would pay $120/30 = $4 for each item. That amount, $4, is $16 less than the $20 she paid for each item.
Answer:
Step-by-step explanation:
We can solve this multiplication of polynomials by understanding how to multiply these large terms.
To multiply two polynomials together, we must multiply each term by each term in the other polynomial. Each term should be multiplied by another one until it's multiplied by all of the terms in the other expression.
- <em>We can do this by focusing on one term in the first polynomial and multiplying it by </em><em>all the terms</em><em> in the second polynomial. We'd then repeat this for the remaining terms in the second polynomial.</em>
Let's first start by multiplying the first term of the first polynomial, , by all of the terms in the second polynomial. ()
Now, we can add up all these expressions to get the first part of our polynomial. Ordering by exponent, our expression is now
Now let's do the same with the second term () and the third term ().
- Adding on to our original expression:
- Adding on to our original expression:
Phew, that's one big polynomial! We can simplify it by combining like terms. We can combine terms that share the same exponent and combine them via their coefficients.
This simplifies our expression down to .
Hope this helped!
Answer:
y = -(3/7)x + 2
Step-by-step explanation:
(see attached)
recall that the slope-intercept form of a linear equation is
y = mx + b
where m = slope = given as -(3/7)
and b = y-intercept = 2
substituting these values into the eqation:
y = mx + b
y = -(3/7)x + 2
3000+200+60+4 I think would be the answer from what I remember
Answer:
as a fraction 1/4 as a decimal .25
Step-by-step explanation: