1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
svetoff [14.1K]
3 years ago
9

7 is 40% of what number

Mathematics
1 answer:
dedylja [7]3 years ago
3 0
40% means 0.4 .

So . . . . . 7 = 0.4 N .

Divide each side by 0.4 . . . N = 7/0.4 = 17.5 


You might be interested in
Help please this problem thank you
tangare [24]
The value of x is 25.
8 0
4 years ago
5 to the power of 2 + 2 to the power of 2 =?
balu736 [363]

Answer:

the answer is 36

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
Relationship between rational numbers and ratios
zzz [600]
A rational number is defined as a number that can be written
as a ratio of whole numbers.  If it can't then it isn't.
3 0
3 years ago
What is the sum of the geometric series E (-2)(-3)^n-1
Trava [24]
Sum of the geometric series: S=?
S=(-2)(-3)^(1-1)+(-2)(-3)^(2-1)+(-2)(-3)^(3-1)+(-2)(-3)^(4-1)
S=(-2)[(-3)^0+(-3)^1+(-3)^2+(-3)^3]
S=(-2)[1+(-3)+9+(-27)]
S=(-2)(1-3+9-27)
S=(-2)(-20)
S=40

Answer: Third option 40
4 0
3 years ago
Read 2 more answers
The probability distribution of the number of students absent on Mondays, is as follows: X 0 1 2 3 4 5 6 7 f(x) 0.02 0.03 0.26 0
alexgriva [62]

a) Add up all the probabilities f(x) where x>3:

f(4)+f(5)+f(6)+f(7)=0.35

b) The expected value is

E[X]=\displaystyle\sum_xx\,f(x)=3.16

Since X is the number of absent students on Monday, the expectation E[X] is the number of students you can expect to be absent on average on any given Monday. According to the distribution, you can expect around 3 students to be consistently absent.

c) The variance is

V[X]=E[(X-E[X])^2]=E[X^2]-E[X]^2

where

E[X^2]=\displaystyle\sum_xx^2\,f(x)=11.58

So the variance is

V[X]=11.58-3.16^2\approx1.59

The standard deviation is the square root of the variance:

\sqrt{V[X]}\approx1.26

d) Since Y=7X+3 is a linear combination of X, computing the expectation and variance of Y is easy:

E[Y]=E[7X+3]=7E[X]+3=25.12

V[Y]=V[7X+3]=7^2V[X]\approx78.13

e) The covariance of X and Y is

\mathrm{Cov}[X,Y]=E[(X-E[X])(Y-E[Y])]=E[XY]-E[X]E[Y]

We have

XY=X(7X+3)=7X^2+3X

so

E[XY]=E[7X^2+3X]=7E[X^2]+3E[X]=90.54

Then the covariance is

\mathrm{Cov}[X,Y]=90.54-3.16\cdot25.12\approx11.16

f) Dividing the covariance by the variance of X gives

\dfrac{\mathrm{Cov}[X,Y]}{V[X]}\approx\dfrac{11.16}{1.59}\approx0.9638

5 0
3 years ago
Other questions:
  • 10. 一、52<br> Please help!
    10·1 answer
  • Consider the figure below. Line FG is parallel to line JK.
    9·1 answer
  • Olivia and Hudson each have an apple. Olivia cuts hers into halves and eats one piece. Hudson cuts his into quarters and eats tw
    9·2 answers
  • Simplify the expression below. 4³–(3x²)³+ (x²)³
    6·1 answer
  • Two chemical plants are releasing waste into a holding tank. Plant 1 releases waste twice as fast as plant 2. Together they fill
    6·1 answer
  • Will give brainliest answer
    7·2 answers
  • Directions: Use the figure to write the symbol for each.
    13·1 answer
  • Solve the simultaneous equations<br> y= 2x^2 y=3x+14
    13·1 answer
  • What is the equation of this line in standard form?
    6·2 answers
  • Help please im stupid
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!