Answer:
0_10 =0_2
Step-by-step explanation:
Convert the following to base 2:
0_10
Hint: | Starting with zero, raise 2 to increasingly larger integer powers until the result exceeds 0.
Determine the powers of 2 that will be used as the places of the digits in the base-2 representation of 0:
Power | \!\(\*SuperscriptBox[\(Base\), \(Power\)]\) | Place value
0 | 2^0 | 1
Hint: | The powers of 2 (in ascending order) are associated with the places from right to left.
Label each place of the base-2 representation of 0 with the appropriate power of 2:
Place | | | 2^0 |
| | | ↓ |
0_10 | = | ( | __ | )_(_2)
Hint: | Divide 0 by 2 and find the remainder. The remainder is the first digit.
Determine the value of 0 in base 2:
0/2=0 with remainder 0
Place | | | 2^0 |
| | | ↓ |
0_10 | = | ( | 0 | )_(_2)
Hint: | Express 0_10 in base 2.
The number 0_10 is equivalent to 0_2 in base 2.
Answer: 0_10 =0_2
Paralell means has same lsope
y=mx+b
m=slope
given
y=3x-5
slope=3
y=3x+b
find b
(3,1)
x=3
y=1
sub and find b
1=3(3)+b
1=9+b
minus 9 both sides
-8=b
y=3x-8 is equation
Answer:
YOUR MOM IS A NI**A
Step-by-step explanation:
First i had s3X with ur mom then i mast_turbated with ur mom and BOOM
<h2>
Answer:</h2>
For a real number a, a + 0 = a. TRUE
For a real number a, a + (-a) = 1. FALSE
For a real numbers a and b, | a - b | = | b - a |. TRUE
For real numbers a, b, and c, a + (b ∙ c) = (a + b)(a + c). FALSE
For rational numbers a and b when b ≠ 0, is always a rational number. TRUE
<h2>Explanation:</h2>
- <u>For a real number a, a + 0 = a. </u><u>TRUE</u>
This comes from the identity property for addition that tells us that<em> zero added to any number is the number itself. </em>So the number in this case is
, so it is true that:

- For a real number a, a + (-a) = 1. FALSE
This is false, because:

For any number
there exists a number
such that 
- For a real numbers a and b, | a - b | = | b - a |. TRUE
This is a property of absolute value. The absolute value means remove the negative for the number, so it is true that:

- For real numbers a, b, and c, a + (b ∙ c) = (a + b)(a + c). FALSE
This is false. By using distributive property we get that:

- For rational numbers a and b when b ≠ 0, is always a rational number. TRUE
A rational number is a number made by two integers and written in the form:
Given that
are rational, then the result of dividing them is also a rational number.