Hello from MrBillDoesMath!
Answer:
8(v+3) ( -1/2 (sqrt(14) - 4 v) (4 v + sqrt(14)) )
Discussion:
Given
64v^3 + 192v^2 - 56 v - 168
Factor 64v^2 from the first two terms. Factor 56 from the last two terms:
64v^2(v+3) - 56(v + 3) => factor (v+3) from both terms
(v+3) (64v^2 - 56) => factor 8 from both terms in the right ()
8(v+3)(8v^2-7) => factor 8y^2-7
8(v+3) ( -1/2 (sqrt(14) - 4 v) (4 v + sqrt(14)) )
Thank you,
MrB
Answer: 25°
Step-by-step explanation:
From the question, Toothy the crocodile wants to eat a delicious chicken and his mouth is open to an angle of 30 degrees but he needs to open his mouth to the angle of 55 degrees for the chicken to fit.
The additional angle that Toothy's mouth needs to be open so he can eat the chicken will be:
= 55° - 30°
= 25°
The answer would be the second one, the graph is decreasing everywhere
The median is the middle number. The median of 18 and 16 would be 17.
18 17 16...therefore 17 is the middle number.
Answer:
Step-by-step explanation:
Mixture problems are really easy because the table never varies from one problem to another and they don't have a lot of variations in them like motion problems do. The table for us will look like this, using T for Terraza coffee and K for Kona:
#lbs x $/lb = Total
T
K
Mix
Now we just have to fill this table in using the info given. We are told that T coffee is $9 per pound, and that K coffee is $13.50 per pound, so we will fill that in first:
#lbs x $/lb = Total
T 9
K 13.50
Mix
Next we are told that the mix is to be 50 pounds that will sell for $9.54 per pound
#lbs x $/lb = Total
T 9
K 13.50
Mix 50 9.54
Now the last thing we have to have to fill in this table is what goes in the first column in rows 1 and 2. If we need a mix of 50 pounds of both coffees and we don't know how many pounds of each to use, then under T we have x and under K we have 50 - x. Notice along the top we have that the method to use to solve this problem is to multiply the #lbs by the cost per pound, and that is equal to the Total. So we'll do that too:
#lbs x $/lb = Total
T x x 9 = 9x
K 50 - x x 13.50 = 675 - 13.50x
Mix 50 x 9.54 = 477
The last column is the one we focus on. We add the total of T to the total of K and set it equal to the total Mix:
9x + 675 - 13.5x = 477 and
-4.5x = -198 so
x = 44 pounds. This means that the distributor needs to mix 44 pounds of T coffee with 6 pounds of K coffee to get the mix he wants and to sell that mix for $9.54 per pound.