Answer:
2.01 M
Explanation:
Step 1: Calculate the moles of acetic acid (HC₂H₃O₂)
The molar mass of acetic acid is 60.05 g/mol. We will use this data to calculate the moles corresponding to 36.2 g of acetic acid.

Step 2: Convert the volume of solution to liters
We will use the relation 1000 mL = 1 L. We assume that the volume of solution is that of water (300 mL)

Step 3: Calculate the molarity of the solution
The molarity is equal to the moles of solute (acetic acid) divided by the liters of solution

answer:
not positive if this is correct just what i ould find on google
10 HSiCl3+ 15 H2O→H10Si10O15+ 30 HCl
Explanation:
Step 1: To make Si equal on both sides. put 10 in front of HSiCl3
10 HSiCl3+ H2O →H10Si10O15+ HCl
Step 2: By putting 30 in front of HCl, Cl can be balanced
10 HSiCl3+ H2O →H10Si10O15+ 30 HCl
Step 3: Now, balance O by putting 15 in front of H2O
10 HSiCl3+ 15 H2O→H10Si10O15+ 30 HCl
Hence the balanced equation is:
10 HSiCl3+ 15 H2O→H10Si10O15+ 30 HCl
Answer:
The correct answer will be " RbF > RbCl > RbBr > Rbl".
Explanation:
The size of the given ions will be:
<u>RbCl:</u>
⇒ 689kJ/mol
<u>RbBr:</u>
⇒ 660kJ/mol
<u>Rbl:</u>
⇒ 630kJ/mol
<u>RbF:</u>
⇒ 785kJ/mol
Now according to the size, the arrangement will be:
⇒ (785kJ/mol) > (689kJ/mol) > (660kJ/mol) >(630kJ/mol)
⇒ RbF > RbCl > RbBr > Rbl
The bond among all opposite charging ions seems to be strongest whenever the ions were indeed small.