Answer:
add x to 7 and divide by 3
Explanation:
easier formula
Answer:
The same chemical properties
Explanation:
Different masses of water at the same temp and pressure will have different volumes and the same empirical formulas and the same chemical properties
Explanation:
The main function of a leaf is to produce food for the plant by photosynthesis. Chlorophyll, the substance that gives plants their characteristic green colour, absorbs light energy.
I will be describing what each of these do to the plant.
- <u>Photosynthesis: </u>Photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that can later be released to fuel the organisms' activities.
- <u>Transpiration</u>: Transpiration is the process of water movement through a plant and its evaporation from aerial parts, such as leaves, stems and flowers. Water is necessary for plants but only a small amount of water taken up by the roots is used for growth and metabolism. The remaining 97–99.5% is lost by transpiration and guttation.
- <u>Guttation</u>: Guttation is the exudation of drops of xylem sap on the tips or edges of leaves of some vascular plants, such as grasses, and a number of fungi. Guttation is not to be confused with dew, which condenses from the atmosphere onto the plant surface. Guttation generally happens during the night time.
- <u>Storage</u>: A storage organ is a part of a plant specifically modified for storage of energy (generally in the form of carbohydrates) or water. Storage organs often grow underground, where they are better protected from attack by herbivores.
- <u>Defense</u>: The first line of defense in plants is an intact and impenetrable barrier composed of bark and a waxy cuticle. Both protect plants against herbivores. Other adaptations against herbivores include hard shells, thorns (modified branches), and spines (modified leaves).
<u>Hope this helps!</u>
Answer:
603000 J
Explanation:
The following data were obtained from the question:
Energy required (Q) =...?
Mass (M) = 10000 g
Specific heat capacity (C) = 2.01 J/g°C
Overheating temperature (T2) = 121°C
Working temperature (T1) = 91°C
Change in temperature (ΔT) =.?
Change in temperature (ΔT) =T2 – T1
Change in temperature (ΔT) = 121 – 91
Change in temperature (ΔT) = 30°C
Finally, we shall determine the energe required to overheat the car as follow:
Q = MCΔT
Q = 10000 × 2.01 × 30
Q = 603000 J
Therefore, 603000 J of energy is required to overheat the car.