Answer:
2.05moles
Explanation:
The balanced chemical equation in this question is as follows;
Sn + 2H2SO4 → SnSO4 + SO2 + 2H2O
Based on the above equation, 2 moles of H2SO4 reacted to produce 1 mole of SnSO4
However, the mass of SnSO4 produced is 219.65 grams. Using mole = mass/molar mass, we can find the number of moles of SnSO4 produced.
Molar mass of SnSO4 where Sn = 118.7, S = 32, O = 16
= 118.7 + 32 + 16(4)
= 150.7 + 64
= 214.7g/mol
mole = 219.65/214.7
mole = 1.023mol
Therefore, if 2 moles of H2SO4 reacted to produce 1 mole of SnSO4
1.023 mol of SnSO4 produced will cause: 1.023 × 2/1
= 2.046moles of H2SO4 to react.
<span>The solute is the substance that is being dissolved while the solvent is the base that the solute is bring dissolved in. For example, in salt water, salt would be the solute that dissolves into the water, and the water is the solvent that the salt is being dissolved in.</span>
Answer:
3 atoms of (C)carbon, 5 atoms of (H)hydrogen and 2 atoms of (O)oxygen
Explanation:
i don't know what you mean by subscribe
and i don't know what a coefficient is

How can telescopes aid visualizing the electromagnetic spectrum?what is the “best place” for telescopes “to detect most radiation” and why?

Astronomers use telescopes that detect different parts of the electromagnetic spectrum. Each type of telescope can only detect one part of the electromagnetic spectrum. There are radio telescopes, infrared telescopes, optical (visible light) telescopes and so on.
The best place to detect most radiation is above the blocking atmosphere, so some telescopes are put in orbit around the Earth. Even visible light is distorted by the atmosphere, so clearer pictures can be got from orbiting telescopes.