<h2>Answer:</h2>
13.391 ft
<h2>Explanations:</h2>
The schematic diagram of the given question is shown below;
The height of the tree is expressed as:
H = h +5
Determine the value of h using the SOH CAH TOA identity

Determine the height of the tree

Hence the height of the tree is 13.391ft
Answer:
The answer is X. because it follows along the line most perfectly.
uhm like, what did you see in the internet is the opposite in the reality
Third option is the correct answer.
Answer:
Step-by-step explanation:
![y - y_1 = m(x - x_1) \\ \\ y - 0 = \bigg[ \frac{2b}{(2a - c)} \bigg] (x - c) \\ \\ y = \bigg[ \frac{2b}{(2a - c)} \bigg]x - \bigg[ \frac{2b}{(2a - c)} \bigg]c \\ \\ \purple { \boxed{ \bold{y = \bigg[ \frac{2b}{(2a - c)} \bigg]x - \bigg[ \frac{2bc}{(2a - c)} \bigg]}}} \\](https://tex.z-dn.net/?f=y%20-%20y_1%20%3D%20m%28x%20-%20x_1%29%20%5C%5C%20%20%5C%5C%20y%20-%200%20%3D%20%20%20%5Cbigg%5B%20%5Cfrac%7B2b%7D%7B%282a%20-%20c%29%7D%20%5Cbigg%5D%20%20%28x%20-%20c%29%20%5C%5C%20%20%5C%5C%20y%20%3D%20%5Cbigg%5B%20%5Cfrac%7B2b%7D%7B%282a%20-%20c%29%7D%20%5Cbigg%5Dx%20-%20%5Cbigg%5B%20%5Cfrac%7B2b%7D%7B%282a%20-%20c%29%7D%20%5Cbigg%5Dc%20%5C%5C%20%20%5C%5C%20%20%5Cpurple%20%7B%20%5Cboxed%7B%20%5Cbold%7By%20%3D%20%5Cbigg%5B%20%5Cfrac%7B2b%7D%7B%282a%20-%20c%29%7D%20%5Cbigg%5Dx%20-%20%5Cbigg%5B%20%5Cfrac%7B2bc%7D%7B%282a%20-%20c%29%7D%20%5Cbigg%5D%7D%7D%7D%20%5C%5C%20)
<span>(180/pi)* asin(1.22*0.0006328/D_1)= 0.385 degree</span>