<h3>
<u>Explanation</u></h3>
- How to see if a shown graph is function or not?
If we want to check that a graph is function or not, we have a way to check by doing these steps.
- Draw a vertical line, make sure that a line has to pass through or intercept a graph.
- See if a line intercepts a graph more than once.
If a line intercepts a graph only one point, a graph is indeed a function. Otherwise, not a function but a relation instead. That includes if a line intercepts more than a point which doesn't make a graph a function.
From the graph, if we follow these steps, we will see that a line will only pass or intercept the graph only one point. Hence, the graph is indeed a function. The following graph that is shown is called "Parabola" for a < 0.
<h3>
<u>Answer</u></h3>
The graph is a function.
Answer:
0.0918
Step-by-step explanation:
We know that the average amount of money spent on entertainment is normally distributed with mean=μ=95.25 and standard deviation=σ=27.32.
The mean and standard deviation of average spending of sample size 25 are
μxbar=μ=95.25
σxbar=σ/√n=27.32/√25=27.32/5=5.464.
So, the average spending of a sample of 25 randomly-selected professors is normally distributed with mean=μ=95.25 and standard deviation=σ=27.32.
The z-score associated with average spending $102.5
Z=[Xbar-μxbar]/σxbar
Z=[102.5-95.25]/5.464
Z=7.25/5.464
Z=1.3269=1.33
We have to find P(Xbar>102.5).
P(Xbar>102.5)=P(Z>1.33)
P(Xbar>102.5)=P(0<Z<∞)-P(0<Z<1.33)
P(Xbar>102.5)=0.5-0.4082
P(Xbar>102.5)=0.0918.
Thus, the probability that the average spending of a sample of 25 randomly-selected professors will exceed $102.5 is 0.0918.
Answer:
∠AEC = 139°
Step-by-step explanation:
Since EC bisects ∠BED then ∠BEC = ∠CED = 4x + 1
∠AED = ∠AEB + ∠BEC + ∠CED = 180 ← straight angle
Substitute values into the equation
11x - 12 + 4x + 1 + 4x + 1 = 180, that is
19x - 10 = 180 ( add 10 to both sides )
19x = 190 ( divide both sides by 19 )
x = 10
Hence
∠AEC = ∠AEB + ∠BEC = 11x - 12 + 4x + 1 = 15x - 11, hence
∠AEC = (15 × 10) - 11 = 150 - 11 = 139°
10m
The process of elimination