1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
VikaD [51]
3 years ago
7

QUICK WILL MARK BRAINLIEST

Physics
1 answer:
Tju [1.3M]3 years ago
4 0

Answer:

37.1°

Explanation:

You might be interested in
What problems do you think might arise if the chromosomes did not align during metaphase?
arlik [135]
What problems do you think might arise if the chromosomes did not align during metaphase?
3 0
2 years ago
Your friends sit in a sled in the snow. If you apply a force pf 75 N to them, they have an acceleration of 0.9 m/s ^ 2. What is
Elza [17]

Answer:

Mass of the sled in the snow 83.33 kg.

<u>Explanation</u>:

Given that,  

Force applied to move the sled in the snow (F) = 75N

\text { Acceleration }(a)=0.9 \mathrm{m} / \mathrm{s}^{2}

We know that

Newton's second law of motion is  

\text { Force }=\text { mass } \times \text { acceleration }

F = ma (Or "force" is equal to "mass" times "acceleration".)

So if we move this around we can isolate mass and get mass

\text { Mass }=\frac{\text { force }}{\text { accelearation }}

\mathrm{M}=\frac{75}{0.9}

M = 83.33 kg

Mass of the sled in the snow <u>83.33 kg.</u>

3 0
3 years ago
An infinite line of charge with linear density λ1 = 8.2 μC/m is positioned along the axis of a thick insulating shell of inner r
bixtya [17]

1) Linear charge density of the shell:  -2.6\mu C/m

2)  x-component of the electric field at r = 8.7 cm: 1.16\cdot 10^6 N/C outward

3)  y-component of the electric field at r =8.7 cm: 0

4)  x-component of the electric field at r = 1.15 cm: 1.28\cdot 10^7 N/C outward

5) y-component of the electric field at r = 1.15 cm: 0

Explanation:

1)

The linear charge density of the cylindrical insulating shell can be found  by using

\lambda_2 = \rho A

where

\rho = -567\mu C/m^3 is charge volumetric density

A is the area of the cylindrical shell, which can be written as

A=\pi(b^2-a^2)

where

b=4.7 cm=0.047 m is the outer radius

a=2.7 cm=0.027 m is the inner radius

Therefore, we have :

\lambda_2=\rho \pi (b^2-a^2)=(-567)\pi(0.047^2-0.027^2)=-2.6\mu C/m

 

2)

Here we want to find the x-component of the electric field at a point at a distance of 8.7 cm from the central axis.

The electric field outside the shell is the superposition of the fields produced by the line of charge and the field produced by the shell:

E=E_1+E_2

where:

E_1=\frac{\lambda_1}{2\pi r \epsilon_0}

where

\lambda_1=8.2\mu C/m = 8.2\cdot 10^{-6} C/m is the linear charge density of the wire

r = 8.7 cm = 0.087 m is the distance from the axis

And this field points radially outward, since the charge is positive .

And

E_2=\frac{\lambda_2}{2\pi r \epsilon_0}

where

\lambda_2=-2.6\mu C/m = -2.6\cdot 10^{-6} C/m

And this field points radially inward, because the charge is negative.

Therefore, the net field is

E=\frac{\lambda_1}{2\pi \epsilon_0 r}+\frac{\lambda_2}{2\pi \epsilon_0r}=\frac{1}{2\pi \epsilon_0 r}(\lambda_1 - \lambda_2)=\frac{1}{2\pi (8.85\cdot 10^{-12})(0.087)}(8.2\cdot 10^{-6}-2.6\cdot 10^{-6})=1.16\cdot 10^6 N/C

in the outward direction.

3)

To find the net electric field along the y-direction, we have to sum the y-component of the electric field of the wire and of the shell.

However, we notice that since the wire is infinite, for the element of electric field dE_y produced by a certain amount of charge dq along the wire there exist always another piece of charge dq on the opposite side of the wire that produce an element of electric field -dE_y, equal and opposite to dE_y.

Therefore, this means that the net field produced by the wire along the y-direction is zero at any point.

We can apply the same argument to the cylindrical shell (which is also infinite), and therefore we find that also the field generated by the cylindrical shell has no component along the y-direction. Therefore,

E_y=0

4)

Here we want to find the x-component of the electric field at a point at

r = 1.15 cm

from the central axis.

We notice that in this case, the cylindrical shell does not contribute to the electric field at r = 1.15 cm, because the inner radius of the shell is at 2.7 cm from the axis.

Therefore, the electric field at r = 1.15 cm is only given by the electric field produced by the infinite wire:

E=\frac{\lambda_1}{2\pi \epsilon_0 r}

where:

\lambda_1=8.2\mu C/m = 8.2\cdot 10^{-6} C/m is the linear charge density of the wire

r = 1.15 cm = 0.0115 m is the distance from the axis

This field points radially outward, since the charge is positive . Therefore,

E=\frac{8.2\cdot 10^{-6}}{2\pi (8.85\cdot 10^{-12})(0.0115)}=1.28\cdot 10^7 N/C

5)

For this last part we can use the same argument used in part 4): since the wire is infinite, for the element of electric field dE_y produced by a certain amount of charge dq along the wire there exist always another piece of charge dq on the opposite side of the wire that produce an element of electric field -dE_y, equal and opposite to dE_y.

Therefore, the y-component of the electric field is zero.

Learn more about electric field:

brainly.com/question/8960054

brainly.com/question/4273177

#LearnwithBrainly

4 0
3 years ago
When the distance between two interacting objects doubles, the gravitational force is
Umnica [9.8K]

The gravitational force will be one quarter.

The gravitational force between two objects is given by the formula

F=GMm/r^2

here, r is the distance between the objects.

Thus the gravitational force is inversely proportional to the square of the distance between the objects, Therefore if the distance between two objects is doubled the force will be one quarter.

5 0
3 years ago
Why freezer is made in the upper part of refrigrator
svp [43]
<h2>Question</h2>

why freezer is made in the upper part of refrigrator

<h2>✒ Answer</h2>

the cold air produced from it is denser than the warmer air in the bottom

<h3>Explaination</h3>

Freezer is normally provided at the top of the refrigerator, because density of the cold air is high compared to the hot air. In a refrigerator the air contacts with the cooling coil and gets cooling.Because of the high density the cold air gets down and the warm air/hot air moves upward and gets cooling from the cooling coil/evaporator coil. This process is repeated. If the Freezer is provided at the bottom place of the refrigerator, the cold air can't to move full area of the refrigerator. So the freezer is normally provided at the top at the refrigerator

4 0
2 years ago
Other questions:
  • 2 toy cars move horizontally toward each other. When they are 40m apart one has an initial velocity of 6m/s and acceleration of
    9·1 answer
  • How much heat is needed to raise the temperature of 2 kg of copper from 20º to 30ºC. The specific heat of copper is 390 J/kgºC.
    10·1 answer
  • What is the difference in the charges on a ballon rubbed in your hair and a glass rod rubbed
    5·1 answer
  • Calculate the kinetic energy of a 100.0-kg meteor approaching the Earth at a speed of 10.0 km/s. Remember that 1 km = 1000 m.
    12·2 answers
  • In an experiment, one of the forces exerted on a proton is F⃗ =−αx2i^, where α=12N/m2. What is the potential-energy function for
    12·1 answer
  • A client is receiving an IV solution of sodium chloride 0.9% (Normal Saline) 250 ml with amiodarone (Cordarone) 1 gram at 17 ml/
    15·1 answer
  • A finite line of charge with linear charge density ????=3.35×10^−6 C/m and length L=0.588 m is located along the x ‑axis (from x
    14·1 answer
  • I have been given this question
    9·1 answer
  • Encontrar el peso de un elefante cuya masa es de 4500kg. Recordar que la gravedad es de 9.8m/s2
    11·2 answers
  • Can anyone help me with this?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!