Energy is the capacity to do some type of work
Answer:
Electron
Explanation:
In the picture, the letter A is pointing to an electron.
Answer:
Explanation:
Let the magnetic field be B = B₁i + B₂j + B₃k
Force = I ( L x B ) , I is current , L is length and B is magnetic field .
In the first case
force = - 2.3 j N
L = 2.5 i
puting the values in the equation above
- 2.3 j = 8 [ 2.5 i x ( B₁i + B₂j + B₃k )]
= - 20 B₃ j + 20 B₂ k
comparing LHS and RHS ,
20B₃ = 2.3
B₃ = .115
B₂ = 0
In the second case
L = 2.5 j
Force = I ( L x B )
2.3i−5.6k = 8 ( 2.5 j x (B₁i + B₂j + B₃k )
= - 20 B₁ k + 20B₃ i
2.3i−5.6k = - 20 B₁ k + 20B₃ i
B₃ = .115
B₁ = .28
So magnetic field B = .28 i + .115 B₃
Part A
x component of B = .28 T
Part B
y component of B = 0
Part C
z component of B = .115 T .
Answer: 430 nm.
Explanation:
The relation of wavelength and frequency is:
Formula used :
where,
= frequency =
= wavelength = ?
c = speed of light = 
Now put all the given values in this formula, we get

Thus the wavelength (in nm) of the blue light emitted by a mercury lamp is 430 nm.
Answer:

Explanation:
First, we are going to calculate the electrical potential in the point middle between the two charges
Remember that the electrical potential can be calculated as:

Where 
and it is satisfy the superposition principle, thus


The electrical potential at 10 cm from charge 1 is:


Since the work - energy theorem, we have:

where q is the electron's charge and m is the electron's mass
Therefore:

