Based on the forces acting on the axes, the resultant moments will be (345, 400, 600 N·m)
<h3>What would be resultant moment about x-axis?</h3>
= F₃ x 3
= -115 x 3
= -345 N·m
<h3>What would be resultant moment about y-axis?</h3>
= F₁ x 2
= -200 x 2
= -400 N·m
<h3>What would be the resultant moment about z-axis?</h3>
= F₄ x 2
= -300 x 2
= - 600 N·m
In conclusion, the resultant moment about x, y, and z axes is (345, 400, 600 N·m)
Find out more on resultant moments at brainly.com/question/6278006.
Answer:

So then the answer for this case would be 29906 cal but we need to convert this into KJ and we know that 1 cal = 4.184 J and if we convert we got:

Explanation:
For this case we know the mass of the water given :

And we know that the initial temperature for this water is
.
We want to cool this water to the human body temperature 
Since the temperatures given are not near to 0C (fusion point) or 100C (the boling point) we don't need to use latent heat, then the only heat involved for this case is the sensible heat given by:

Where
represent the specific heat for the water and this value from tables we know that
for the water.
So then we have everything in order to replace into the formula of sensible heat and we got:

So then the answer for this case would be 29906 cal but we need to convert this into KJ and we know that 1 cal = 4.184 J and if we convert we got:

Answer:
answer is B
Explanation:
The table below shows the wavelengths for some electromagnetic waves
Answer:
E = 307667 N/C
Explanation:
Since the object's mass is 1 g, then its weight in newtons is 0.001 * 9.8 = 0.0098 N.
This weight should have the same magnitude of the vertical component of the tension T of the string (T * cos(37)) so we can find the magnitude of the tension T via:
0.0098 N = T * cos(37)
then T = 0.0098/cos(37) N = 0.01227 N
Knowing the tension's magnitude, we can find its horizontal component:
T * sin(37) = 0.007384 N
and now we can obtain the value of the electric field since we know the charge of the ball to be: -2.4 * 10^(-8) C:
0.007384 N = E * 2.4 * 10^(-8) C
Then E = 0.007384/2.4 * 10^(-8) N/C
E = 307667 N/C
Answer: 27 joules
Explanation:
Work is done when force is applied on the bench over a distance. it is measured in joules.
Workdone = force x distance
= 45 N x 0.6 metres
= 27 joules
Thus, 27 joules of work is done on the bench.