Answer:
None of these
Explanation:
For a reaction;
aA + bB ------>cC + dD
The equilibrium constant K is given as;
K = [C]^c [D]^d/[A]^a [B]^b
The equilibrium constant neither depends on the concentrations of the reactants nor on that of the products.
Let us recall that at equilibrium, the concentrations of reactants and products remain largely constant. This implies that, concentration of species do not appreciably change at equilibrium because the rates of forward and reverse reactions are equal.
Hence, the equilibrium constant neither depends on the initial/final concentrations of the reactants nor on the initial/final concentrations of the products.
Solids always have definite shape and definite volume because their particles are packed together. Liquids have a definite volume but not definite shape, because their particles still kinda tight but able to move around, and gases don’t have a definite shape nor volume, because their particles are crazy and go everywhere
Answer:
4.16x10⁻³m
Explanation:
Molality is defined as the ratio between moles of a solute, in this case glucose, and kg of solvent.
As there are 100g of solvent, <em>the kg are 0.1. </em>Thus, we only need to calculate from the mass of glucose its moles to solve the molality of the solution.
<em>Moles glucose:</em>
There are 75mg = 0.075g of glucose. To conver mass to moles it is necessary molar mass.
Molar mass glucose:
6C = 12.01g/mol*6 = 72.06g/mol
12H = 12*1.008g/mol = 12.10g/mol
6O = 6*16g/mol = 96g/mol
72.06 + 12.10 + 96 = 180.16g/mol
Moles of 0.075g of glucose:
0.075g * (1 mol / 180.16g) =
4.16x10⁻⁴ moles of glucose
<em>Molality of the solution:</em>
4.16x10⁻⁴ moles of glucose / 0.1kg of solvent =
<h3>4.16x10⁻³m</h3>