<u>Answer:</u> The of the reaction at given temperature is -12.964 kJ/mol.
<u>Explanation:</u>
For the given chemical reaction:
The expression of for the given reaction:
We are given:
Putting values in above equation, we get:
To calculate the Gibbs free energy of the reaction, we use the equation:
where,
= Gibbs' free energy of the reaction = ?
= Standard gibbs' free energy change of the reaction = 0 J (at equilibrium)
R = Gas constant =
T = Temperature =
= equilibrium constant in terms of partial pressure =
Putting values in above equation, we get:
Hence, the of the reaction at given temperature is -12.964 kJ/mol.
The most accurately represented John Dalton's model of the atom is: C. a tiny, solid sphere with a predictable mass for a given element
<h3>Further explanation</h3>
The development of atomic theory starts from the first term conveyed by Greek scientists who suggested that every substance has the smallest particles so that the word atomos appears, which means it cannot be divided. So, John Dalton, a British scientist put forward the hypothesis about atoms, among others:
- 1. The elements are composed of atoms which are small particles which cannot be subdivided
- 2. Atoms that make up the same element have the same properties, mass, and size, while for different elements, the properties are also different
- 3. Compounds are composed of two or more atoms in a fixed ratio
- 4. In chemical reactions, atoms after and before a reaction cannot be destroyed, only separation and reassembly occur
Point 3 shows the relationship with The Law of Constant Composition of Proust so that further research on atoms is more developed
Dalton's hypothesis is described as a solid sphere like a very small shot put ball or a bowling ball based on Dalton's hobby in bowling
<h3>Learn more</h3>
Bohr's model of the atom
brainly.com/question/1625635
Rutherford performed the gold foil experiment
brainly.com/question/1859083
The part of an atom that is mostly empty space
brainly.com/question/4089014
Keywords: atom, Dalton, a solid sphere, The Law of Constant Composition
The scheme is shown below, the steps involved are as follow,
Step one: Reduction: The carbonyl group of given compound on reduction using
Wolf Kishner reagent converts the carbonyl group into -CH₂- group.
Step two: Epoxidation: The double bond present in starting compound when treated with
m-CPBA (<span>meta-Chloroperoxybenzoic acid) gives corrsponding epoxide.
Step three: Reduction: The epoxide is reduced to alcohol on treatment with
Lithium Aluminium Hydride (LiAlH</span>₄)<span> followed by hydrolysis.
Step four: Oxidation: The hydroxyl group (alcohol) is
oxidized to carbonyl (ketonic group) using oxidizing agent
Chromic acid (H</span>₂CrO₄).
A mixture, because it contains multiple dyes and compounds
hopefully i could help ;)