Answer:
The ratio of the drag coefficients
is approximately 0.0002
Step-by-step explanation:
The given Reynolds number of the model = The Reynolds number of the prototype
The drag coefficient of the model,
= The drag coefficient of the prototype, 
The medium of the test for the model,
= The medium of the test for the prototype, 
The drag force is given as follows;

We have;

Therefore;







= (1/17)^3 ≈ 0.0002
The ratio of the drag coefficients
≈ 0.0002.
Complete question :
Wright et al. [A-2] used the 1999-2000 National Health and Nutrition Examination Survey NHANES) to estimate dietary intake of 10 key nutrients. One of those nutrients was calcium in all adults 60 years or older a mean daily calcium intake of 721 mg with a standard deviation of 454. Usin these values for the mean and standard deviation for the U.S. population, find the probability that a randonm sample of size 50 will have a mean: (mg). They found a) Greater than 800 mg b) Less than 700 mg. c) Between 700 and 850 mg.
Answer:
0.10935
0.3718
0.9778
0.606
Step-by-step explanation:
μ = 721 ; σ = 454 ; n = 50
P(x > 800)
Zscore = (x - μ) / σ/sqrt(n)
P(x > 800) = (800 - 721) ÷ 454/sqrt(50)
P(x > 800) = 79 / 64.205295
P(x > 800) = 1.23
P(Z > 1.23) = 0.10935
2.)
Less than 700
P(x < 700) = (700 - 721) ÷ 454/sqrt(50)
P(x < 700) = - 21/ 64.205295
P(x < 700) = - 0.327
P(Z < - 0.327) = 0.3718
Between 700 and 850
P(x < 850) = (850 - 721) ÷ 454/sqrt(50)
P(x < 850) = 129/ 64.205295
P(x < 700) = 2.01
P(Z < 2.01) = 0.9778
P(x < 850) - P(x < 700) =
P(Z < 2.01) - P(Z < - 0.327)
0.9778 - 0.3718
= 0.606
Answer:
I choose option c hope it helps
X=-39 answer
2/5x=-12
2x=-12(5)
2x=-60
X=-30