1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
TEA [102]
3 years ago
7

How do u solve this 5 − (x + 5) −2x + 4)

Mathematics
1 answer:
Luda [366]3 years ago
3 0
5 - (x + 5) - (2x + 4)
5 - x - 5 - 2x - 4
-3x - 4
You might be interested in
Kala drove 250 miles using 9 gallons of gas. at this rate how many gallons of gas would she need to drive 275 miles
Rus_ich [418]

Answer:

9.9 gallons

Step-by-step explanation:

To solve this problem, we need to cross multiply. Lets input the values (250, 275, 9) as shown below:

\frac{9}{250}  = \frac{x}{275}

Next we cross multiply. We multiply 250 and x, and we multiply 9 and 275.

250(x) = 250x\\

275(9) = 2,475

Now, lets put the values above back into the equation:

250x = 2,475

Lets solve this equation. First we divide 2,475 by 250, making x by itself.

\frac{2,475}{250} =x

9.9 = x

This means that to drive 275 miles, Kala would need to use 9.9 gallons of gas.

8 0
3 years ago
Learn with an example<br> Find the perimeter. Simplify your answer.<br> y-6<br> y-5<br> y-5<br> y-6
koban [17]

Answer:

P = 22

Step-by-step explanation:

P= l(2) + w(2)

5(2) + 6(2)

10 + `12

22

6 0
3 years ago
Quadratic form of f(x)=(x+7)^2
Triss [41]

Answer:

x^2 + 14x + 49

Step-by-step explanation:

Use the distributive property:

(x + 7)(x + 7) = x^2 + 7x + 7x + 49 = x^2 + 14x + 49

3 0
2 years ago
First question, thanks. I believe there should be 3 answers
zysi [14]

Given: The following functions

A)cos^2\theta=sin^2\theta-1B)sin\theta=\frac{1}{csc\theta}\begin{gathered} C)sec\theta=\frac{1}{cot\theta} \\ D)cot\theta=\frac{cos\theta}{sin\theta} \\ E)1+cot^2\theta=csc^2\theta \end{gathered}

To Determine: The trigonometry identities given in the functions

Solution

Verify each of the given function

\begin{gathered} cos^2\theta=sin^2\theta-1 \\ Note\text{ that} \\ sin^2\theta+cos^2\theta=1 \\ cos^2\theta=1-sin^2\theta \\ Therefore \\ cos^2\theta sin^2\theta-1,NOT\text{ }IDENTITIES \end{gathered}

B

\begin{gathered} sin\theta=\frac{1}{csc\theta} \\ Note\text{ that} \\ csc\theta=\frac{1}{sin\theta} \\ sin\theta\times csc\theta=1 \\ sin\theta=\frac{1}{csc\theta} \\ Therefore \\ sin\theta=\frac{1}{csc\theta},is\text{ an identities} \end{gathered}

C

\begin{gathered} sec\theta=\frac{1}{cot\theta} \\ note\text{ that} \\ cot\theta=\frac{1}{tan\theta} \\ tan\theta cot\theta=1 \\ tan\theta=\frac{1}{cot\theta} \\ Therefore, \\ sec\theta\ne\frac{1}{cot\theta},NOT\text{ IDENTITY} \end{gathered}

D

\begin{gathered} cot\theta=\frac{cos\theta}{sin\theta} \\ Note\text{ that} \\ cot\theta=\frac{1}{tan\theta} \\ cot\theta=1\div tan\theta \\ tan\theta=\frac{sin\theta}{cos\theta} \\ So, \\ cot\theta=1\div\frac{sin\theta}{cos\theta} \\ cot\theta=1\times\frac{cos\theta}{sin\theta} \\ cot\theta=\frac{cos\theta}{sin\theta} \\ Therefore \\ cot\theta=\frac{cos\theta}{sin\theta},is\text{ an Identity} \end{gathered}

E

\begin{gathered} 1+cot^2\theta=csc^2\theta \\ csc^2\theta-cot^2\theta=1 \\ csc^2\theta=\frac{1}{sin^2\theta} \\ cot^2\theta=\frac{cos^2\theta}{sin^2\theta} \\ So, \\ \frac{1}{sin^2\theta}-\frac{cos^2\theta}{sin^2\theta} \\ \frac{1-cos^2\theta}{sin^2\theta} \\ Note, \\ cos^2\theta+sin^2\theta=1 \\ sin^2\theta=1-cos^2\theta \\ So, \\ \frac{1-cos^2\theta}{sin^2\theta}=\frac{sin^2\theta}{sin^2\theta}=1 \\ Therefore \\ 1+cot^2\theta=csc^2\theta,\text{ is an Identity} \end{gathered}

Hence, the following are identities

\begin{gathered} B)sin\theta=\frac{1}{csc\theta} \\ D)cot\theta=\frac{cos\theta}{sin\theta} \\ E)1+cot^2\theta=csc^2\theta \end{gathered}

The marked are the trigonometric identities

3 0
1 year ago
A large college wishes to determine the average SAT scores for students who apply from New York. They surveyed 105 students from
sweet [91]

Answer:

Statements I and II

Step-by-step explanation:

In Statistics, parameter is any numerical value that characterizes a population while statistics are numerical values that characterizes a sample from a given population.

Statistics are most often used to estimate the population parameters

For example the sample mean is a statistic and the population mean is a paranmeter

The mean SAT score of all students from New York is the parameter.

The mean SAT score of 105 students from New York is called the statistic.

The correct choice is the third option.

5 0
3 years ago
Other questions:
  • What is true about the product, a fraction less than 1 is multiplied by 9/10
    5·2 answers
  • PLEASE HELP (URGENT)! WILL MARK THE BRAINLIEST!!! PLEASE HELP!!!!!
    9·1 answer
  • (3 × 2)^2 + 6 ÷ 3 × 2
    10·1 answer
  • Monkeys at a zoo eat 4 cups of food everyday elephants eat 76 times as much! Which equation and solution represent the number of
    15·1 answer
  • Can someone solve these?​
    7·1 answer
  • If x+20+ 35 = 180 so x = ?<br><br><br><br><br><br> a) 130<br> b) 25<br> c) 125<br> d) 100
    9·2 answers
  • Can someone please help me?
    13·1 answer
  • Can you please help me with this question​
    8·1 answer
  • Tell whether the ordered pair is a solution to the equation. Please show how you solved it.
    10·2 answers
  • You need to Solve 3 math problems
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!