Answer:
I think its the third one
Step-by-step explanation:
Given:
The equation for the area of the first option is:

Where x is the side length of the current square park.
To find:
The side length of the current square park.
Solution:
We have,

It can be written as:

Splitting the middle term, we get




We know that the side length of a park cannot be negative. So, the only possible value of x is 320.
Therefore, the most direct method to solve the given equation is splitting the middle term and the side length of the current square park is 320 meters.
The steps 5 and 6 in the construction of a new line segment ensures the lengths are equal.
A line segment in geometry has two different points on it that define its boundaries. Alternatively, we may define a line segment as a section of a line that joins two points.
Below are the steps for copying a line segment:
- 1. Let's begin with a line segment we need to copy, AB.
- 2. we take a point C at this stage. That will be one endpoint of the new line section, either below or above AB.
- 3. Now we place the the compass pointer on the point A of line segment AB.
- 4. We spread the compass out until point B, making sure that its breadth corresponds to the length of AB.
- 5. We place the compass tip on the point C created in step 2 without adjusting the compass's width.
- 6. We now draw a rough arc without adjusting the compass's settings. we add a point D oh the arc . The new line segment will be formed by this.
- 7. From C, draw a line to D;CD thus formed is equal to AB.
Hence steps 5 and 6 are the steps in the construction of a new line segment which ensures the lengths are equal.
To learn more about line segment visit:
brainly.com/question/25727583
#SPJ9
Answer:
The correct option is;
B. Yes. The ratios of towers to customers (thousands) are all equivalent to a unit rate of 52 Towers/(Thousand customers)
Step-by-step explanation:
The given data can be presented as follows;
Cell Phone Towers
Customer (thousands)
Towers
1) 5.25
273
2) 6.25
325
3) 7.25
377
4) 9.25
481
From the given data, we have the ratio Towers/Customer (thousands) given as follows;
For 1), we have;
273 Towers/(5.25 thousands customers) = 52 Towers/(Thousand customer)
For 2), we have;
325 Towers/(6.25 thousands customers) = 52 Towers/(Thousand customer)
For 3), we have;
377 Towers/(7.25 thousands customers) = 52 Towers/(Thousand customer)
For 4), we have;
481 Towers/(9.25 thousands customers) = 52 Towers/(Thousand customer)
Therefore, the ratios of towers to customers (thousands) all have the same equivalent unit rate of 52 Towers/(thousand customers).