I feel like you just put random numbers in to waste someone time... but I did the problem any way.
Equation 1 is
,
Equation 2 is [/tex] 3x-2y = -1 [/tex]
for first equation LCD= 3 *5 = 15 , So we multiply whole equation by 15


Now multiply second equation by -3 , to make the coefficient of y equal and opposite , so that we can apply the elimination method

Add both the equations


Divide both sides by 11

Plug in any one of the equation we get
3(3) -2y = -1
9 - 2y = -1
subtract 9 from both sides
-2y = -10
divide both sides by -2
y=5
So the solution is x= 3 , y= 5
Which means
a. The system is consistent and independent. TRUE
Answer:
The point estimate for this problem is 0.48.
Step-by-step explanation:
We are given that a University wanted to find out the percentage of students who felt comfortable reporting cheating by their fellow students.
A survey of 2,800 students was conducted and the students were asked if they felt comfortable reporting cheating by their fellow students. The results were 1,344 answered "Yes" and 1,456 answered "no".
<em>Let </em>
<em> = proportion of students who felt comfortable reporting cheating by their fellow students</em>
<u></u>
<u>Now, point estimate (</u>
<u>) is calculated as;</u>
where, X = number of students who answered yes = 1,344
n = number of students surveyed = 2,800
So, Point estimate (
) =
= <u>0.48 or 48%</u>
NOT MY WORDS TAKEN FROM A SOURCE!
(x^2) <64 => (x^2) -64 < 64-64 => (x^2) - 64 < 0 64= 8^2 so (x^2) - (8^2) < 0 To solve the inequality we first find the roots (values of x that make (x^2) - (8^2) = 0 ) Note that if we can express (x^2) - (y^2) as (x-y)* (x+y) You can work backwards and verify this is true. so let's set (x^2) - (8^2) equal to zero to find the roots: (x^2) - (8^2) = 0 => (x-8)*(x+8) = 0 if x-8 = 0 => x=8 and if x+8 = 0 => x=-8 So x= +/-8 are the roots of x^2) - (8^2)Now you need to pick any x values less than -8 (the smaller root) , one x value between -8 and +8 (the two roots), and one x value greater than 8 (the greater root) and see if the sign is positive or negative. 1) Let's pick -10 (which is smaller than -8). If x=-10, then (x^2) - (8^2) = 100-64 = 36>0 so it is positive
2) Let's pick 0 (which is greater than -8, larger than 8). If x=0, then (x^2) - (8^2) = 0-64 = -64 <0 so it is negative3) Let's pick +10 (which is greater than 10). If x=-10, then (x^2) - (8^2) = 100-64 = 36>0 so it is positive Since we are interested in (x^2) - 64 < 0, then x should be between -8 and positive 8. So -8<x<8 Note: If you choose any number outside this range for x, and square it it will be greater than 64 and so it is not valid.
Hope this helped!
:)