1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aev [14]
3 years ago
14

Given that π = n M R T, rearrange the equation to solve for V

Chemistry
1 answer:
Pachacha [2.7K]3 years ago
4 0

Answer:

V= n/M

Explanation:

From;

π = nRT/V = MRT

Where;

n= number of moles

R= gas constant

T= absolute temperature

M= molar mass

V= volume of the solution

π= osmotic pressure

Thus;

nRT/V = MRT

nRT = VMRT

V= nRT/MRT

V= n/M

You might be interested in
Which organism on the food chain is a carnivore? fungus grass grasshopper spider
Lady_Fox [76]

Answer:

I think it would it spider

Explanation:

Spider catch there meals in there web then suck the blood out after it wraps them up in webing

5 0
4 years ago
What determines the strength of the attraction between molecules?
alexandr402 [8]
To determine strength of attractive forces between the molecules the size of the molecules, their polarity (dipole moment), and their shape. ... If two molecules have about the same size and similar shape, the dipole-dipole intermolecular attractive force increases with increasing polarity.
5 0
3 years ago
Read 2 more answers
You have a solution of 600 mg of caffeine dissolved in 100 mL of water. The partition coefficient for aqueous caffeine extracted
klio [65]

Answer:

159 mg caffeine is being extracted in 60 mL dichloromethane

Explanation:

Given that:

mass of caffeine in 100 mL of water =  600 mg

Volume of the water = 100 mL

Partition co-efficient (K) = 4.6

mass of caffeine extracted = ??? (unknown)

The portion of the DCM = 60 mL

Partial co-efficient (K) = \frac{C_1}{C_2}

where; C_1= solubility of compound in the organic solvent and C_2 = solubility in aqueous water.

So; we can represent our data as:

K=(\frac{A_{(g)}}{60mL} ) ÷ (\frac{B_{(mg)}}{100mL} )

Since one part of the portion is A and the other part is B

A+B = 60 mL

A+B = 0.60

A= 0.60 - B

4.6=(\frac{0.6-B(mg)}{60mL} ) ÷ (\frac{B_{(mg)}}{100mL})

4.6 = \frac{(\frac{0.6-B(mg)}{60mL} )}{(\frac{B_{(mg)}}{100mL})}

4.6 × (\frac{B_{(mg)}}{100mL}) = (\frac{0.6-B(mg)}{60mL} )

4.6 B *\frac{60}{100} = 0.6 - B

2.76 B = 0.6 - B

2.76 + B = 0.6

3.76 B = 0.6

B = \frac{0.6}{3.76}

B = 0.159 g

B = 159 mg

∴ 159 mg caffeine is being extracted from the 100 mL of water containing 600 mg of caffeine with one portion of in 60 mL dichloromethane.

4 0
3 years ago
Read 2 more answers
A mysterious white powder could be powdered sugar (C12H22O11), cocaine (C17H21NO4), codeine (C18H21NO3), norfenefrine (C8H11NO2)
rodikova [14]

Norfenefrine (C₈H₁₁NO₂).

<h3>Further explanation</h3>

We will solve a case related to one of the colligative properties, namely freezing point depression.

The freezing point of the solution is the temperature at which the solution begins to freeze. The difference between the freezing point of the solvent and the freezing point of the solution is called freezing point depression.

\boxed{ \ \Delta T_f = T_f(solvent) - T_f(solution) \ } \rightarrow \boxed{ \ \Delta T_f = K_f \times molality \ }

<u>Given:</u>

A mysterious white powder could be,

  • powdered sugar (C₁₂H₂₂O₁₁) with a molar mass of 342.30 g/moles,
  • cocaine (C₁₇H₂₁NO₄) with a molar mass of 303.35 g/moles,
  • codeine (C₁₈H₂₁NO₃) with a molar mass of 299.36 g/moles,
  • norfenefrine (C₈H₁₁NO₂) with a molar mass of 153.18 g/moles, or
  • fructose (C₆H₁₂O₆) with a molar mass of 180.16 g/moles.

When 82 mg of the powder is dissolved in 1.50 mL of ethanol (density = 0.789 g/cm³, normal freezing point −114.6°C, Kf = 1.99°C/m), the freezing point is lowered to −115.5°C.

<u>Question: </u>What is the identity of the white powder?

<u>The Process:</u>

Let us identify the solute, the solvent, initial, and final temperatures.

  • The solute = the powder
  • The solvent = ethanol
  • The freezing point of the solvent = −114.6°C
  • The freezing point of the solution = −115.5°C

Prepare masses of solutes and solvents.

  • Mass of solute = 82 mg = 0.082 g
  • Mass of solvent = density x volume, i.e., \boxed{ \ 0.789 \ \frac{g}{cm^3} \times 1.50 \ cm^3 = 1.1835 \ g = 0.00118 \ kg  \ }

We must prepare the solvent mass unit in kg because the unit of molality is the mole of the solute divided by the mass of the solvent in kg.

The molality formula is as follows:

\boxed{ \ m = \frac{moles \ of \ solute}{kg \ of \ solvent} \ } \rightarrow \boxed{ \ m = \frac{mass \ of \ solute \ (g)}{molar \ mass \ of \ solute \times kg \ of \ solvent} \ }

Now we combine it with the formula of freezing point depression.

\boxed{ \ \Delta T_f =  K_f \times \frac{mass \ of \ solute \ (g)}{molar \ mass \ of \ solute \times kg \ of \ solvent} \ }

It is clear that we will determine the molar mass of the solute (denoted by Mr).

We enter all data into the formula.

\boxed{ \ -114.6^0C - (-115.5^0C) = 1.99 \frac{^0C}{m} \times \frac{0.082 \ g}{Mr \times 0.00118 \ kg} \ }

\boxed{ \ 0.9 = \frac{1.99 \times 0.082}{Mr \times 0.00118} \ }

\boxed{ \ Mr = \frac{0.16318}{0.9 \times 0.00118} \ }

We get \boxed{ \ Mr = 153.65 \ }

These results are very close to the molar mass of norfenefrine which is 153.18 g/mol. Thus the white powder is norfenefrine.

<h3>Learn more</h3>
  1. The molality and mole fraction of water brainly.com/question/10861444
  2. About the mass and density of ethylene glycol as an  antifreeze brainly.com/question/4053884
  3. About the solution as a homogeneous mixture  brainly.com/question/637791

Keywords: a mysterious white powder, sugar, cocaine, codeine, norfenefrine, fructose, the solute, the solvent, dissolved, ethanol, normal freezing point, the freezing point depression, the identity

7 0
3 years ago
Read 2 more answers
g Given that 50.0 mL of 0.100 M magnesium bromide reacts with 13.9 mL of silver nitrate solution according to the unbalanced equ
ipn [44]

Answer:

0.719M AgNO₃

Explanation:

Based on the reaction:

MgBr₂ + 2AgNO₃ ⇄ 2AgBr + Mg(NO₃)₂

<em>1 mole of magnesium bromide reacts completely with 2 moles of AgNO₃</em>

<em />

To find molarity of AgNO₃ solution we need to determine moles of AgNO₃ and, as molarity is the ratio of moles over liter (13.9mL = 0.0139L). Now, to determine moles of AgNO₃ we need to use the reaction, thus:

<em>Moles AgNO₃:</em>

<em />

Moles of MgBr₂ are:

50.0mL = 0.050L * (0.100mol / L) = 0.00500 moles of MgBr₂.

As the silver nitrate reacts completely and 2 moles of AgNO₃ reacts per mole of MgBr₂:

0.00500 moles MgBr₂ * (2 moles AgNO₃ / 1 mole MgBr₂) =

0.0100 moles of AgNO₃ are in the solution.

And molarity is:

0.0100 moles AgNO₃ / 0.0139L =

<h3>0.719M AgNO₃</h3>
3 0
3 years ago
Other questions:
  • Witch of the following work together to form tissues?
    14·2 answers
  • How much heat, in joules and in calories, must be added to a 75.0–g iron block with a specific heat of 0.449 j/g °c to increase
    14·1 answer
  • Which of these molecules has a lewis structure with a central atom having no nonbonding electron pairs?
    13·1 answer
  • An emulsifying agent is typically characterized by having ____. a. one polar end c. two polar ends b. one nonpolar end d. one po
    13·1 answer
  • What days did the Catholic Church h celebrate with fireworks
    7·2 answers
  • Each element is____than____element.
    11·1 answer
  • What is the first step of scientific method A.Hypothesis
    9·1 answer
  • I NEED HELP PLEASE, THANKS! BRAINLIEST :)
    11·1 answer
  • 3.The _____________________system works with the ___________________and ________________systems to supply oxygen and nutrients f
    10·1 answer
  • At what altitude could a climber expect to first see snow?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!