Answer:
Gustavo
Step-by-step explanation:
if anything this looks like 38-19n, if the first term is n=1.
But as that isn't an option, gustavo should be correct, as his sequence would go down by 19 each time (yuki's would go up by 19 each time, not down like the sequence shows)
If you have $5000 and you invest $2000 in a certificate of deposit, you have $3000 invested in the bonds. Each earns an annual interest of 6% and 8%, respectively. The total interest is shown below,
($2000) x 0.06 + ($3000) x 0.08 = $360
Thus, the amount of the total interest is $360.
Hours || earning
1 || 20
2 || 40
3 ||60
The rate of change is the slope
Slope is 20
If you were to write this as an equation it would basically be y=20x
First, tan(<em>θ</em>) = sin(<em>θ</em>) / cos(<em>θ</em>), so if cos(<em>θ</em>) = 3/5 > 0 and tan(<em>θ</em>) < 0, then it follows that sin(<em>θ</em>) < 0.
Recall the Pythagorean identity:
sin²(<em>θ</em>) + cos²(<em>θ</em>) = 1
Then
sin(<em>θ</em>) = -√(1 - cos²(<em>θ</em>)) = -4/5
and so
tan(<em>θ</em>) = (-4/5) / (3/5) = -4/3
The remaining trig ratios are just reciprocals of the ones found already:
sec(<em>θ</em>) = 1/cos(<em>θ</em>) = 5/3
csc(<em>θ</em>) = 1/sin(<em>θ</em>) = -5/4
cot(<em>θ</em>) = 1/tan(<em>θ</em>) = -3/4
<u>Given</u>:
Given that the isosceles trapezoid JKLM.
The measure of ∠K is 118°
We need to determine the measure of each angle.
<u>Measure of ∠L:</u>
By the property of isosceles trapezoid, we have;



Thus, the measure of ∠L is 62°
<u>Measure of ∠M:</u>
By the property of isosceles trapezoid, we have;

Substituting the value, we get;

Thus, the measure of ∠M is 62°
<u>Measure of ∠J:</u>
By the property of isosceles trapezoid, we have;

Substituting the value, we get;

Thus, the measure of ∠J is 118°
Hence, the measures of each angles of the isosceles trapezoid are ∠K = 118°, ∠L = 62°, ∠M = 62° and ∠J = 118°