Answer:
The number of distinct arrangements is <em>12600</em><em>.</em>
Step-by-step explanation:
This is a permutation type of question and therefore the number of distinguishable permutations is:
n!/(n₁! n₂! n₃! ... nₓ!)
where
- n₁, n₂, n₃ ... is the number of arrangements for each object
- n is the number of objects
- nₓ is the number of arrangements for the last object
In this case
- n₁ is the identical copies of Hamlet
- n₂ is the identical copies of Macbeth
- n₃ is the identical copies of Romeo and Juliet
- nₓ = n₄ is the one copy of Midsummer's Night Dream
Therefore,
<em>Number of distinct arrangements = 10!/(4! × 3! × 2! × 1!)</em>
<em> = </em><em>12600 ways</em>
<em />
Thus, the number of distinct arrangements is <em>12600</em><em>.</em>
The sides of a square or rectangle
The answer is A or it should be
Answer:
not much info
Step-by-step explanation: